Molecular and Cell Biology and Genetics

Doctoral degree in full-time or combined form. The language of instruction is Czech.

The programme can be studied only as a single subject.

Application deadline depending on the admission procedure chosen (midnight 30 April 2025 or 15 December 2025)

What will you learn?

The program is product of fusion of former independent Molecular and Cellular Biology with General and Molecular Genetics. We propose the fusion to reflect modern holistic approaches dominating in both fields that converge them to close proximity and bringing benefits to both of them. The aim of the program is providing excellent scientific education in the field of molecular and cell biology and genetics. The graduates thus should be proficient to accomplish research of living phenomena on molecular, cellular, tissue or organismal levels. To achieve this aim, students are systematically guided to advance their theoretical knowledge in the field and master practical skills in applications of modern methods of molecular and cellular biology, genetics and other related fields. The key themes include study of genes and genomes and their expression in microorganisms, plants, animals and humans. Special attention is paid to their relations to pathological conditions. Research performed on microorganisms is focused preferentially on molecular diagnosis and genomics of selected pathogenic and clinically significant bacterial strains and their interactions with bacteriophages. Research of plants is concentrated mainly on genes of model plants and plants used in agriculture. In animals and humans, research is focused on genetical structure of populations, molecular diagnosis of prenatal and postnatal pathogenic situations, genetics of tumors, study of signalling processes connected with deregulation of proliferation, differentiation and programmed cell death in tumor cells and detection of genetical factors associated with certain polygenic diseases. Students are free to perform independent research in well-equipped laboratories and experienced supervisors are nominated to guide them in this effort. Students are continuously confronted with progress in the field by discussions in regular laboratory meetings, institutional seminars or conferences. Students successfully presenting their results in conferences or written articles can be awarded by special scholarships for excellent representation of the Deparmtent of Experimental Biology and following activities:

1. Successfull presentation record resulting from reaching aims of Ph.D. thesis projects, such as:

  • papers in international journals or chapters in monographies, considering ranking of the journal (IF, Q), placings of the student among co-authors, number of co-authors, proportion of the student efforts on the published results.
  • presentation of the results on conferencies, considering placings of the student amnog co-authors, number of co-authors, proportion of the student efforts on the published results and the type of the conference (international or domestic).

The scholarship can be used for partial covering of travel/accomodation expenses or conference fees.

The essential condition for awarding the scholarship is correct affiliation of the presentations (both papers and conference abstracts) to the Deparment of Experimental Biology, Faculty of Science, Masaryk University.

2. Participation in teaching younger students of Master programmes how to perform experimental methods and interprete the results obtained.

3. Participation in grant projects. Long-lasting participation and significant contribution to accomplishing the projects aims can be awarded by getting part-time job or contract for certain period.

“Windows of the living cell universe wide-opened.”

Practical training

The students who are interested in applied research can collaborate with companies as Repromeda (assisted reproduction), MB Pharma (devising phage preparations) or to participate in grant projects funded by TACR leading to applied outcomes. We aim to further support contractual research with applied potential, search for suitable partners and provide them with option to collaborate with students interested in this kind of research.

Further information

Additional information can be found in following addresses:

http://www.sci.muni.cz/cz/DoktorskeStudium/Prehled-programu-a-oboru

http://www.sci.muni.cz/cz/UEB

The Office for Doctoral Studies, Quality, Academic Affairs and Internationalization takes care of doctoral students SCI MU

https://www.sci.muni.cz/en/students/phd

On the department's website, you can find the following information:

  • Forms (application forms for state examinations and defences, various applications, etc. )
  • Legislation (links to: MU Study and Examination Regulations, Scholarship Regulations of MU, Terms of Scholarship Programmes of the Faculty of Science)
  • Dissertations (Guidelines for dissertations, templates)
  • Manuals (guidelines for Individual Study Plans, study and research obligations in DSP, etc.)
  • Doctoral study programmes (recommended study plans, examination committees, overview of accredited programmes)
  • Deadlines for the doctoral state examinations and defences
  • Enrolment (information needed for the enrolment to the next semester)
  • Graduation

but also office hours, contacts, news, information on skills development and scholarships.

Detailed information on stays abroad can be found on this website:

https://www.sci.muni.cz/en/students/phd/develop-your-skills/stay-abroad

Career opportunities

Graduates find positions in various research institutes, universities, hospitals and other medical facilities and laboratories oriented to virology, microbiology, genetics, biochemistry, immunology, pharmacology, pathology, etc. They are ready to perform independent research, draft scientific projects, create grant applications, design experimental work itself, interprete results rigorously and present them in oral as well as written forms. They are also educated to act as teachers. Graduates from this program are sought-after by employers and many of them currently work on positions of leading researchers, university teachers, top managers and directors in various research and education institutions in Brno, Prague, Ostrava, České Budějovice, Olomouc, etc. Many graduates leaves for postdoctoral stays abroad, especially to west-european countries, USA, Canada, Japan, Australia. They often become highly-appreciated members of research teams there.

Admission requirements

Admission to Doctoral degree programmes in 2025/2026 (beginning: Autumn 2025)
— Submission deadline until midnight 30 Apr 2025

Admission procedure
The admission procedure takes place in the form of an oral entrance examination (usually in an online form), which has two parts:
1) Expert interview – the committee examines the applicant's professional competence and motivation on the basis of his/her CV, motivation letter and letter of recommendation, submitted by the applicant together with the application form. During the interview candidates present their PhD research project including methodology, and expected outputs in the presence of the supervisor. The committee also evaluates the candidate's knowledge of molecular and cell biology and genetics, with an emphasis on the area of planned research and his/her ability to put the findings into a general context (maximum 100 points).
2) Language part – the committee evaluates the candidate's ability to present and discuss his/her previous/current scientific (diploma) work and the concept of the planned PhD research in English. (max. 100 points).

More information about admission process for international applicants in general can be found here.

Date of the entrance exam
The applicants will receive information about the entrance exam by e-mail usually at least 10 days before the exam.
Please, always check your e-mails, including spam folders.

Conditions of admission
To be admitted, a candidate must obtain a total of 70 out of 100 points in the expert knowledge part and 60 out of 100 points in the language part.
Successful applicants are informed of their acceptance by e-mail and subsequently receive an invitation to the enrolment.

Programme capacity
The capacity of a given programme is not fixed; students are admitted based on a decision by the Doctoral Board after assessing their aptitude for study and motivation.

International applicants for doctoral study (Czech and Slovak Republics applicants NOT included)
— Submission deadline until midnight 15 Dec 2025

Admission procedure
The admission interview is usually in an online form and consists of two parts:
1) Expert interview – the committee examines the applicant's professional competence and motivation on the basis of his/her CV, motivation letter and letter of recommendation, submitted by the applicant together with the application form. During the interview candidates present their PhD research project including methodology, and expected outputs in the presence of the supervisor. The committee also evaluates the candidate's knowledge of molecular and cell biology and genetics, with an emphasis on the area of planned research and his/her ability to put the findings into a general context (maximum 100 points),
2) Language part – the committee evaluates the candidate's ability to present and discuss his/her previous/current scientific (diploma) work and the concept of the planned PhD research in English. (max. 100 points).

More information about admission process for international applicants in general can be found in the section Admission Process.

Date of the entrance exam
The applicants will receive information about the entrance exam by e-mail usually at least 10 days before the exam.
Please, always check your e-mails, including spam folders.

Conditions of admission
To be admitted, a candidate must obtain a total of 70 out of 100 points in the expert knowledge part and 60 out of 100 points in the language part.
Successful applicants are informed of their acceptance by e-mail and subsequently receive an invitation to the enrolment.

Programme capacity
The capacity of a given programme is not fixed; students are admitted based on a decision by the Doctoral Board after assessing their aptitude for study and motivation.

Deadlines

1 Jan – 30 Apr 2025

Submit your application during this period

Admission to Doctoral degree programmes in 2025/2026 (beginning: Autumn 2025)

2 Jan – 15 Dec 2025

Submit your application during this period

International applicants for doctoral study (Czech and Slovak Republics applicants NOT included)

Dissertation topics

Single-subject studies

Single-cell transcriptomics-guided identification of novel molecular targets and prognostic markers in neuroblastoma
Supervisor: doc. RNDr. Jan Škoda, Ph.D.

Neuroblastoma is the most common and highly lethal extracranial pediatric solid tumor, characterized by extensive intratumor and interpatient heterogeneity that dictates its clinical manifestation and complicates its management. Currently, about one in ten low- and intermediate-risk patients is misclassified and eventually dies from progressive disease, while available therapies still fail in half of the high-risk neuroblastoma cases. Neuroblastoma arises anywhere along the sympathetic nervous system, probably from neural crest cell (NCC)-derived sympathoadrenal progenitors. Recent single-cell transcriptomics studies of our collaborators shed new light on NCC differentiation and provided unprecedented insights into differentiation trajectories and cellular transition states during normal sympathoadrenal development. As suggested by our published and preliminary results, translating this updated understanding of the sympathoadrenal development into neuroblastoma research might hold the key for unraveling neuroblastoma heterogeneity. The main aim of this thesis is to explore the utility of single-cell transcriptomics data for identification of clinically useful therapeutic targets and markers that could be streamlined into improved neuroblastoma treatment protocols.
Supported by the Ministry of Health of the Czech Republic, project NW24-07-00017.

Notes

PLEASE NOTE: Before initiating the formal application process to doctoral studies, interested candidates are required to contact Dr. Jan Škoda for informal discussion.

Supervisor

doc. RNDr. Jan Škoda, Ph.D.

The role of non-productive RNA splicing in gene expression
Supervisor: Mgr. Přemysl Souček, Ph.D.

RNA sestřih je důležitým krokem v úpravě pre-mRNA, kdy jsou z transkribované pre-mRNA odstraněny intronové segmenty a zbývající exony spojeny za vzniku zralé mRNA. V posledních letech bylo prokázáno, že kromě autentických míst mohou být v pre-mRNA přítomna další sestřihová místa, která nejsou využívána standardním způsobem, ale mohla by ovlivňovat sestřih RNA nepřímo. Tato místa tak pravděpodobně nejsou efektivně využívána pro sestřih, ale stále mohou být rozpoznávána, a/nebo ovlivňovat sestřih RNA a tím přispívat k celkové modulaci míry genové exprese. Cílem doktorské práce bude charakterizovat takovýto typ míst ať už přímo z kompletního transkriptomu, nebo nepřímo s využitím arteficiálních genových konstruktů, jejichž sekvence může být upravena za účelem podrobnějšího studia takovýchto sestřihových míst.

Financování projektu:
Projekt je podpořen grantem 24-11219K (Lead Agency Project, GAČR), na němž jsou vyhrazeny prostředky na poloviční úvazek pro Ph.D. studenta. Spolupracující stranou je slovinská laboratoř vedená Jernejem Ulem. V rámci projektu je plánována úzká spolupráce s touto laboratoří a předpokládáme aktivní zapojení studenta do projektu na obou stranách, včetně absolvování stáže na tomto zahraničním pracovišti.

RNA splicing is an important step in pre-mRNA processing, where introns are removed from the transcribed pre-mRNA and the remaining exons form mature mRNA. In recent years, it has been shown that in addition to authentic sites, other splice sites may be present in pre-mRNA and that these splice sites are not standard spliced but could influence RNA splicing indirectly. Although these sites are probably not efficiently used for splicing, may still be recognized and/or influence RNA splicing and thus contribute to the overall modulation of gene expression. The aim of PhD thesis will be to characterize such sites directly from the complete transcriptome or indirectly using artificial gene constructs whose sequence can be manipulated to study splicing mechanism in more detail.

Notes

Téma je rezervováno. This topic is reserved.

Supervisor

Mgr. Přemysl Souček, Ph.D.

Supervisors

Study information

Provided by Faculty of Science
Type of studies Doctoral
Mode full-time Yes
combined Yes
distance No
Study options single-subject studies Yes
single-subject studies with specialization No
major/minor studies No
Standard length of studies 4 years
Language of instruction Czech
Collaborating institutions
  • The Czech Academy of Sciences
  • Biofyzikální ústav AV ČR
Doctoral board and doctoral committees

Do you have any questions?
Send us an e-mail to

prof. Mgr. Petr Beneš, Ph.D.

Consultant

e‑mail:

You are running an old browser version. We recommend updating your browser to its latest version.