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Commentary 
This habilitation thesis is a compilation of publications from the domain of protein engineering 

authored or co-authored by Stanislav Mazurenko. The methods introduced in the publications were 
developed between the years 2015 and 2025 mainly at Masaryk University, Brno. The main motivation 
for the methods was to design computational tools for the analysis and modelling of complex 
biological data. Such a toolset enables protein engineers to select protein targets, plan experiments, 
analyse the collected data, and formulate a hypothesis about biological phenomena of interest in a 
more informed way, drastically enlarging the space of possibilities while reducing the experimental 
effort required to explore this space. The developed methods focus on two main approaches: (1) low-
parameter modelling of the data, primarily based on physical principles, and (2) machine learning-
based modelling, which leverages existing data sets to identify useful patterns in the data. 

The thesis is divided into two parts. The first part provides a commentary on the contributions 
the thesis is based on. In Chapter 1, we motivate the need for data modelling and computational 
tools to study proteins. Then Chapter 2 discusses the bottom-up low-parameter modelling, which 
leverages biophysical principles. The alternative, top-down modelling that is based on machine 
learning methods, is presented in Chapter 3. Finally, Chapter 4 summarises the presented methods 
and proposes directions for future research. The second part consists of 11 publications in which 
these contributions were introduced. In the first two papers, the author was responsible for the 
design of the study, developing the mathematical framework, and programming the algorithms. In 
the remaining articles, the author was designing and overseeing data modelling and machine 
learning contributions to the corresponding studies.  

The list of publications is as follows (the asterisk indicates corresponding authors): 

1. Mazurenko, S., Kunka, A., Beerens, K., Johnson, C. M., Damborsky, J., & Prokop, Z. (2017). 
Exploration of protein unfolding by modelling calorimetry data from reheating. Scientific 
Reports, 7(1), 16321. 

2. Mazurenko, S., Stourac, J., Kunka, A., Nedeljković, S., Bednar, D., Prokop, Z., & 
Damborsky, J. (2018). CalFitter: a web server for analysis of protein thermal denaturation 
data. Nucleic Acids Research, 46(W1), W344-W349. 

3. Stourac, J., Dubrava, J., Musil, M., Horackova, J., Damborsky, J., Mazurenko, S.*, & Bednar, 
D.* (2021). FireProtDB: database of manually curated protein stability data. Nucleic Acids 
Research, 49(D1), D319-D324. 

4. Kunka, A., Lacko, D., Stourac, J., Damborsky, J., Prokop, Z.*, & Mazurenko, S.* (2022). 
CalFitter 2.0: Leveraging the power of singular value decomposition to analyse protein 
thermostability. Nucleic Acids Research, 50(W1), W145-W151. 

5. Velecký, J., Hamsikova, M., Stourac, J., Musil, M., Damborsky, J., Bednar, D.*, & 
Mazurenko, S.* (2022). SoluProtMutDB: A manually curated database of protein solubility 
changes upon mutations. Computational and Structural Biotechnology Journal, 20, 6339-
6347. 

6. Khan, R. T., Pokorna, P., Stourac, J., Borko, S., Arefiev, I., Planas-Iglesias, J., Dobias, A., 
Pinto, G., Szotkowska, V., Sterba, J., Slaby, O., Damborsky, J., Mazurenko, S.*, & Bednar, D.* 
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(2024). A computational workflow for analysis of missense mutations in precision 
oncology. Journal of Cheminformatics, 16(1), 86. 

7. Marques, S. M., Kouba, P., Legrand, A., Sedlar, J., Disson, L., Planas-Iglesias, J., Sanusi, Z., 
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1. Introduction  
1.1. Protein engineering and its impact 

Proteins are fundamental biomolecules performing a vast array of essential functions in living 
organisms, from acting as the building blocks of cells and tissues to catalysing chemical reactions 
and regulating physiological processes (1). Understanding protein structure, dynamics, and 
functions thus provides crucial insights into biological mechanisms, making the study of proteins a 
cornerstone of life sciences and biomedicine. Existing protein databases, such as UniProt and 
Protein Data Bank, reveal unparalleled diversity of proteins by cataloguing hundreds of millions of 
protein sequences and hundreds of thousands of protein structures from a broad range of 
organisms, representing the vast evolutionary landscape (2, 3). Tapping into this protein diversity 
fuels the development of several domains, including biotechnology, medicine, and synthetic biology. 
For instance, enzymes from extremophiles, microorganisms thriving in extreme environments, are 
highly stable and function efficiently under harsh conditions, such as extreme temperatures, pH, or 
salinity, making them ideal for industrial applications, including biofuel production, pharmaceutical 
synthesis, and bioremediation (4). Thermostable DNA polymerases have revolutionised PCR, a 
crucial technique in molecular biology and forensic science (5). Constructing genetic, metabolic, or 
signalling networks with predictable and controllable properties has made it possible to reprogram 
cells to produce drugs, biofuels, biomaterials, and fine chemicals (6).  

Apart from understanding the function of a particular protein, the knowledge of how proteins 
change upon mutations in their primary sequence may lead to actionable insights for developing 
drugs against inherited diseases (7, 8) and biotechnologically relevant protein modifications (9). 
Protein engineering refers to the process of designing and modifying proteins to alter their functions 
in the desired direction. By using techniques such as directed evolution, site-directed mutagenesis, 
and computational modelling, protein engineers can change the amino acid sequence of a given 
protein, for example, to enhance its stability, activity, or specificity, enabling the development of 
more effective therapeutic enzymes, environmentally friendly biocatalysts for manufacturing, and 
novel biomaterials (10). Overall, protein engineering is a key technology driving innovation in 
biotechnology and synthetic biology. 

In our research, we have studied and engineered a range of proteins with potential for 
applications in biotechnology and medicine, including haloalkane dehalogenases, fibroblast growth 
factors, amyloid-beta peptides, apolipoprotein E, and staphylokinase. Haloalkane dehalogenases 
are model enzymes for understanding catalytic mechanisms and engineering bioremediation tools 
for toxic halogenated compounds (11–13). Fibroblast growth factors are key signalling proteins with 
crucial roles in development, tissue repair, and cancer research (14). Amyloid-beta peptides are 
central to Alzheimer’s disease research because of the association between their aggregation into 
plaques and disruption of neural function (15). The genetic variants of Apolipoprotein E, a protein 
involved in the metabolism of fats, have a profound impact on several neurological diseases, 
particularly in modulating the risk of Alzheimer's disease (16). Staphylokinase is a bacterial protein 
promising for its potent fibrinolytic activity, making it an important candidate for developing 
thrombolytic therapies (17, 18).  
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Despite numerous successful protein engineering cases, protein engineering remains a 
challenging task. Its complexity stems from multiple sources, from the lack of annotated data in 
protein databases to difficulties associated with experimental data collection and interpretation. 
Our next section elaborates on those challenges. 

1.2. Challenges in engineering proteins 
Several groups of challenges can be identified depending on the target area of protein science: 

protein discovery, protein characterisation, protein engineering, and molecular simulation. 

Protein discovery is significantly hindered by the paucity of annotations in databases. Based 
on the UniProtKB/Swiss-Prot protein knowledgebase statistics 2025_04, fewer than 180,000 protein 
sequences have evidence of protein existence at the protein or transcript level, which is less than 
0.1% of the total number of sequences available in UniProtKB. Fewer than 1.2 million gene ontology 
annotations have been inferred from experiments1. This lack creates an enormous gap between the 
number of available protein sequences and the information available for search. Therefore, the 
known protein universe remains largely experimentally unannotated, motivating the use of in silico 
tools for predicting protein properties (19, 20). 

Protein characterisation requires the availability of sufficient quantities of the sample, access 
to appropriate experimental assays, sufficiently high throughput, and, more importantly, proper data 
analysis methods to extract the desired property from raw data (21). Assays that enable the 
measurement of the desired protein property directly are quite rare, and in many cases, one must 
apply data analysis methods to model the observed experimental signal and determine the 
underlying parameters by fitting into experimental signals (22). However, a typical profile of a wet lab 
researcher features limited programming and data analysis skills. Moreover, some parameters are 
not identifiable from the available measurements, even in the idealised noiseless case, due to the 
mathematical properties of the governing equations, often leading to data misinterpretations and 
parameter misestimations (23–25). This highlights the need for the development of more robust 
parameter estimation protocols and user-friendly tools for data modelling and analysis. 

Protein engineering must efficiently explore the vast space of possible amino acid 
substitutions, an arduous task given that a single mutation can already lead to a misfolded or 
nonfunctional protein (26, 27). Even if we had a method capable of accurately predicting the effect 
of a single set of amino acid substitutions on a property of interest in 1 μs, the evaluation of all 
possible five-point mutants of an “average” 300-amino-acid-long protein would take almost 2000 
years2. This is primarily the reason why the majority of mutational data comes from single-point 
mutants (26, 28), and larger steps in a protein sequence require advanced tools for smart navigation 
in the sequence space.  

Finally, molecular simulations are a powerful group of methods to provide insights into protein 
function (29, 30). However, their capabilities are limited by the complex protein mechanisms, 

 
1 https://release.geneontology.org/2025-10-10/release_stats/index.html 
2 The total number of possible 5-point mutants for a 300-amno-acid-long protein is 19582837560 position 

combinations x 205 amino acid identities.  
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intricate interactions with the environment, and the sizes of the systems one is capable of modelling 
(31). Simulating several microseconds of a molecular dynamics trajectory for a single protein can 
still take weeks, even on a high-performance cluster, significantly limiting the accessibility of such 
simulations for protein engineering campaigns. Moreover, the vast amounts of data generated by 
simulations still require data processing to provide interpretable and actionable insights for protein 
engineering.  

It is therefore clear that a large subset of challenges in protein engineering refers to data 
generation, analysis, and modelling, in particular, methods for extracting patterns from available 
data. Those methods can be roughly subdivided into two classes: low-parameter modelling and 
machine learning. The next section provides a brief introduction to these two different paradigms of 
modern data modelling approaches used for proteins. 

1.3. Two paradigms of data modelling  
Historically, modelling of protein-related data, e.g., measurements from enzyme kinetics, 

protein denaturation or aggregation, or protein-ligand interactions, was performed using equations 
derived from physics (24). Such equations will describe the time course of the reaction, the 
properties of interactions, and the outcomes of the process typically by means of differential 
operators and parameters of the system under study. They are estimated from the data using 
scientific software, such as KinTek Global Kinetic Explorer or Amylofit (32, 33). Their numbers are 
typically limited to a few dozen at most, with higher numbers requiring significant simplifications of 
the models, e.g., linearisation to enable feasible parameter estimation (34, 35). Otherwise, the 
parameters stop being constrained by available data. In what follows, we will refer to such an 
approach as low-parameter modelling. 

An alternative approach, machine learning, pursues the opposite: start with equations 
featuring a large number of parameters without any particular physical interpretation, sometimes in 
billions, and find any set of their values that will explain the patterns in the data. The important 
distinction from the previous approach, making such vast fitting useful, is the protocol whereby a 
part of the data is initially put aside and used only to evaluate the generalisability of the fitted model. 
In other words, the data model is assessed based on how well it performs with new data. Since the 
patterns are extracted from the data directly and only very limited prior knowledge of the system is 
used for modelling, this approach critically depends on the amount and quality of the available data. 
Thus, although the first attempts at applying machine learning to proteins date back several decades 
ago (36, 37), they have become increasingly widespread more recently, primarily due to the growing 
availability of data and computational resources.  

Both these approaches, low parameter modelling and machine learning, have their 
advantages and disadvantages. In the low-data regime, when only a limited set of measurements is 
available, the data set size may not be enough to learn generalisable patterns via machine learning. 
Moreover, low parameter modelling is inherently interpretable as the parameters used have physical 
meaning. However, it struggles in the regimes where the observed property is too complex to be 
modelled or requires too many equations to be fitted into the measurements reliably. In such cases, 
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machine learning offers a powerful alternative provided the available dataset is large enough to 
discern the required relationships. 

This work explores both approaches. Our contribution to low-parameter modelling primarily 
focuses on protein stability and analysis of protein thermal denaturation. Machine learning 
approaches address a wide range of topics, from predicting the effects of mutations on protein 
properties to the analysis of molecular dynamics data. 
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2. Low-Parameter Modelling in Protein Engineering 
2.1. General overview 

Biological data is notoriously complex and difficult to analyse. Even when experimental 
conditions are carefully designed and controlled for, protein datasets collected in those experiments 
almost always require subsequent data analysis to extract useful information. This primarily stems 
from the inability to directly observe a protein property of interest, such as protein folding and 
unfolding energy differences, the rate of conversion of a substrate into product, or protein 
aggregation rates. Most modern experimental techniques rely on measuring proxy signals that are 
affected by desired quantities, such as folding energies or kinetic rates, and come from fluorescence, 
absorbance, bioluminescence, electric resistance, or heat flow, to name a few. Hence, one requires 
data analysis to deconvolute these signals into interpretable insights and parameters. 

A typical data analysis workflow for extracting the required quantities from experimental 
signals unfolds as follows (Fig. 1). First, one suggests a mathematical model that is based on the 
physical nature of the experiment and consists of several parameters, including the desired quantity. 
Then, for a given set of initial parameters, the model is used to simulate the signal one should observe 
in experiments. This simulated signal is compared with the experimentally obtained measurements, 
and the model parameters are adjusted to account for any discrepancy, usually in an iterative fashion 
until they converge to a specific set of values. Finally, the desired quantities of interest are calculated 
based on the fitted parameters. 

Such a workflow usually requires specialised knowledge of mathematics, programming, and 
biophysics, which is typically beyond the skill set of an average wet lab researcher. While sometimes 
instruments already include software for data processing, its functionality is often limited to only a 
few simple mathematical models, which are usually insufficient for analysing signals beyond simple 
standard cases.  

One such example is the analysis of protein unfolding data, where software tools can only 
account for a simple one-step reversible protein unfolding from native to unfolded states (38). Such 
a simple unfolding model is usually not enough in many protein stabilisation campaigns, in which the 
shift of unfolding to higher temperatures usually entails irreversible transitions (11). Moreover, 
multidomain proteins rarely unfold in one step. Thus, in the absence of an off-the-shelf tool to 
account for more complex behaviour or programming expertise to create a custom-made script, 
protein engineers are forced to apply incorrect models, compromising the data quality. 

In Chapter 2, we will consider the problem of analysing protein thermal unfolding data in more 
detail. We will first introduce the basic workflow, main formulas and notations, and the challenges 
in data processing. We will then describe the methods we developed to tackle these challenges. We 
will conclude this chapter with the outlook.  
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Figure 1. A typical workflow for processing experimental data when studying proteins. An example of the raw data is 
heat capacity change upon protein unfolding, generated by differential scanning calorimetry at the scan rates of 0.5oC/min, 
1oC/min , and 2oC/min. First, a candidate model of unfolding is selected (e.g., one- or two-step unfolding). Second, the 
corresponding parametrised equations are modelled and programmed (e.g., fractions of states in time). Third, their 
parameters are optimised to minimise the error of the fit (the yellow star corresponds to the global minimum). Optionally, 
a different candidate model is selected and fitted to the raw signal. Finally, the quantities of interest (e.g., Gibbs free energy 
difference ΔG or melting temperature Tm) are derived from the parameters.  
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2.2. Protein thermostability and unfolding 
Naturally occurring proteins have primarily evolved to function in mild conditions of a living 

cell, limiting their applications for biotechnology (39). Protein engineers generally aim to improve 
protein stability, and thermostability is their primary target as it is correlated with half-life, expression 
yield, and activity in the presence of denaturants.  

Several techniques are most commonly used to measure protein thermostability. In differential 
scanning calorimetry (DSC), the native state of the protein is slowly perturbed by gradually increasing 
temperature, and the difference in the heat capacity between the sample and a reference cell with 
buffer is recorded (40, 41). This technique is one of the most powerful methods as it records the 
energetic footprint of unfolding directly, in terms of the amount of heat necessary to unfold a protein. 
The changes in proteins upon thermal unfolding can also be detected using 
fluorescence/absorbance spectroscopy, light scattering, and circular dichroism (CD) (42). Such 
measurements do not give a full energy profile of unfolding, e.g., CD is sensitive to changes in the 
secondary structure only, but they are still powerful in providing structural insights. Finally, the 
protein sample can also be perturbed by a rapid increase in temperature, e.g., in temperature jump 
experiments, and then the kinetic trace of protein transitioning from native to denatured states can 
be recorded by spectroscopic reading. Such experiments help evaluate the kinetic stability of the 
protein (43), i.e., the energy barrier separating the native and denatured states, rather than the 
equilibrium distribution of protein in those states. 

All three types of thermostability measurements are important as they provide insights from 
different perspectives. A common feature of these measurements is the need to apply advanced 
data analysis techniques to extract meaningful quantities. Indeed, protein engineers are usually 
interested in identifying the protein melting temperature (Tm, the temperature at which half of the 
protein in the sample is in the denatured state in equilibrium), unfolding intermediates, and the 
energies separating those intermediates (ΔG, the Gibbs free energy change). All these quantities are 
not observed directly and typically must be derived from modelling the signal and curve-fitting 
(Fig. 1). The next subsection introduces the basics of such data modelling. 

2.3. Workflow for data analysis of protein thermostability  
The fundamental mathematical framework to deconvolute the signal is the Lumry-Eyring 

model, given by the following scheme: 

[1] DIN kkk ⎯→⎯⎯⎯ → − 211,

, 

in which protein sample undergoes the first reversible transition from the native (N) to intermediate 
(I) states, characterised by the rate constants k1 for forward and k-1 for reverse reactions, respectively, 
followed by the second irreversible step at the rate k2 to the denatured state (D). This model then 
leads to the following system of ordinary differential equations describing the fraction of the protein 
in each state: 
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where x denotes protein fractions in corresponding states. The right-hand side version exploits the 
fact that in DSC experiments, the temperature (T) changes with a preset scan rate ν: dT/dt=v. In fact, 
this dependence of the temperature on time is the major challenge in simulating system (2), as it 
translates to the time-dependence of the rate constants, typically modelled according to Arrhenius 
or, equivalently, Eyring laws (44, 45): 

[3] 𝑘 = 𝐴 exp {−
𝐸𝑎
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 } = exp {
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Here, R is the universal gas constant, kB is Boltzmann's constant, h is Planck's constant. In the 
Arrhenius model, A (or Tf) and 𝐸𝑎 are protein-specific parameters, obtained from fitting the 
experimental data. The Eyring law model of kinetic rates usually provides a more familiar 
representation from the transitional state theory by using the Gibbs energy of activation ∆G‡. Since 
the Gibbs energy consists of enthalpy and entropy components (protein-specific parameters in the 
Eyring law) according to the equation ∆G‡=∆H‡ – T∆S‡, the connection between the two formalisms 
becomes clear when the first-order approximation in T is taken: 
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In the simplest form, the enthalpy ∆H‡ and entropy ∆S‡ changes are assumed to be temperature-
independent constants, derived from the fitting of the data. A more general approach assumes a 
linear dependence of the enthalpy on temperature with the coefficient ∆Cp. However, for the sake of 
not overwhelming the readers, we will not go into these details here. 

Knowing the fraction of protein in different states allows modelling the observed signal in 
experiments. For instance, in many kinetic experiments based on fluorescence, one will model the 
signal as a weighted sum of contributions from individual states: 

[5] 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓𝑁𝑥𝑁(𝑇) + 𝑓𝐼𝑥𝐼(𝑇) + 𝑓𝐷𝑥𝐷(𝑇), 

where each coefficient f is another parameter to be determined from the fitting. Calorimetry 
modelling is more challenging because the measured signal is the amount of heat absorbed to 
transition between the states, and in its simplest form for system (1), it is derived as follows: 

[6] 𝑆𝑖𝑔𝑛𝑎𝑙(𝑇) = 𝑓𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +
𝑑𝑥𝐼

𝑑𝑇
𝛥𝐻𝐼 +

𝑑𝑥𝐷

𝑑𝑇
𝛥𝐻𝐷. 



16 
 

Substituting equations for the temperature derivatives from system [2] then allows simulating the 
signal for a given set of protein-specific parameters.  

To sum up, the standard protocol of solving the unfolding mechanism consists of the following 
steps: (i) collect the data, (ii) select a model of unfolding similar to scheme [1]; (iii) set initial 
parameters (e.g., ∆H‡, ∆S‡ for each rate constant and f for each fraction) to reasonable values; (iv) fit 
the data by iteratively updating the parameters until convergence; and (v) check the fitting and 
change the model or adjust the starting parameters if the outcome is unsatisfactory. The following 
subsection elaborates on the main challenges associated with this protocol. 

2.4. Gaps in the state of the art and our contribution  
Several challenges to proper data analysis for protein thermal denaturation needed to be 

addressed before our contributions. First, due to the temperature dependence of system [2], no tool 
was capable of processing signals from DCS, fluorescence, and temperature jump experiments 
simultaneously. General-purpose but programming-intensive tools for data analysis, such as 
MATLAB, Origin, or Igor Pro, required programming skills typically beyond those that protein 
engineers possess. A few software packages could handle different types of thermal denaturation 
experiments, e.g., KinTek Explorer allowed fitting kinetic traces in temperature jump experiments, 
MicroCal DSC Origin could process DSC data, and CDpal enabled fitting of CD signals. However, 
such tools were unable to fit global data from different sources, e.g. equilibrium and kinetic data 
simultaneously. And separate data analyses may eventually lead to conflicting models of protein 
unfolding. Moreover, consecutive unfolding steps sometimes overlap significantly and produce an 
apparent single transition which cannot be resolved by fitting into just one data type. Finally, many 
independent variables must be introduced in separate data analyses, increasing the uncertainty and 
risks of overinterpreting the data. These issues could be avoided in the global data fitting, but no tool 
was available for that purpose. 

The second challenge concerned the models. The unfolding of large proteins may follow more 
complex schemes with multiple intermediate states and/or their conformations than scheme [1]. In 
such cases, each step of unfolding, either reversible or irreversible, must be modelled using rate 
constants according to the same principles as in the Lumry-Eyring model. Yet, the software on DSC 
or CD devices, for example, could only handle a very basic fully reversible model, in which k2 was 
assumed zero, and the scan rate v was slow enough to ensure equilibrium for each temperature, with 
the equilibrium unfolding constant K:  

[7] 𝐾(𝑇) =
𝑘1

𝑘−1
= exp {−

𝛥𝐺1
‡ − 𝛥𝐺−1

‡

𝑅𝑇
} = exp {−

𝛥𝐻

𝑅𝑇
(1 −

𝑇

𝑇𝑚
)}. 

In such a simplified setting, only two parameters suffice to model the DSC signal: the enthalpy 

change upon unfolding 𝛥𝐻 = 𝛥𝐻1
‡ − 𝛥𝐻−1

‡ , and the melting temperature Tm at which K=1, i.e., half of 
the protein in the sample is the denatured state. This simplification allows replacing the integration 
of system [2] by modelling each fraction as a simple equation: xN=1/(1+K) and xD=K/(1+K). However, 
many proteins do not produce unfolding curves that can be adequately described by such a 
simplified approach, e.g., due to the presence of unfolding intermediates. Therefore, simple models 
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provided by the manufacturers of devices were not enough and one had to search the literature for 
more complex models and program them from scratch. 

The third challenge was the inability to distinguish between fully and partially reversible models 
of unfolding. Protein stabilisation campaigns aim to shift unfolding to high temperature ranges, 
where the transition often becomes irreversible. Therefore, one must know if the reversibility 
assumption can be made in data processing and if the rates are fast enough to enable the equilibrium 
approximation. Protein engineers often apply cooling and reheating of the sample to gather some 
insights. However, no data model was available to incorporate such measurements into the global 
data fitting. 

Finally, the fourth challenge was specific to the spectroscopic signal. Quite often, multiple 
wavelengths are recorded during the data collection. Understanding which wavelengths are most 
informative is critical for further data analysis. A naïve approach is to select a single wavelength to 
record the signal, risking losing much information contained in other wavelengths. A more advanced 
approach applies the singular value decomposition to the matrix of measurements at different time 
points and wavelengths and selects the linear combinations of different wavelengths corresponding 
to the largest singular values. However, such decomposition was also beyond reach for protein 
engineers without programming skills, as no suitable analytical toolbox was available for researchers 
without an advanced data analysis background. 

Our main contributions address these four limitations in a series of papers. First, we developed 
the workflow and the web server CalFitter, capable of globally fitting the data from different types of 
protein thermal denaturation experiments (38). Second, we collected from the literature and 
implemented 14 different models of protein unfolding known to date. These are now available for 
users dealing with complex unfolding profiles. Third, we derived a mathematical framework for 
modelling the data from reheating experiments and incorporated it in the CalFitter web server (46). 
Finally, with our second version of CalFitter, we introduced the singular value decomposition analysis 
as an optional first step in data processing (47). The overall pipeline of the tool is shown in Figure 2, 
and all these developments are accessible at https://loschmidt.chemi.muni.cz/calfitter/. 

2.5. Outlooks 
Despite the aforementioned developments in the data modelling for protein thermal 

denaturation in our studies, several directions can be pursued to advance the field forward. One of 
the most significant obstacles is the need to supply reasonable starting parameters in any data-
fitting campaign. While several heuristics exist to help set up parameters for simple mechanisms, 
more complex unfolding mechanisms require hours of trial and error in selecting starting 
parameters, fitting the models, simulating the signal, and adjusting the starting parameters. 
Moreover, protein denaturation often incorporates aggregation, and adding steps for protein 
aggregation might better elucidate the unfolding mechanism. However, aggregation is notoriously 
difficult to model mathematically. Finally, the application of recent advances in machine learning to 
the analysis of protein denaturation data has largely been unexplored and may substantially simplify 
the workflow. 

https://loschmidt.chemi.muni.cz/calfitter/
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Figure 2. The overall pipeline of CalFitter. The webserver was a first-of-the-kind tool to globally fit the data coming from 
different types of protein thermal denaturation experiments: calorimetry, spectroscopy, and kinetics measurements. Once 
the data are uploaded, the interactive user interface offers several unfolding mechanisms to select from and fit into the 
data. The final step provides the calculation of the main characteristics of unfolding with their confidence intervals and 
different visualisations. The second release (green boxes) additionally introduced a simpler data upload module and, more 
importantly, an extra step enabling the singular value decomposition. The entire web server thus allows scientist without a 
data analysis background to process their data in a user-friendly graphical interface. The figure is adopted from (47). 
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3. Machine Learning in Protein Engineering 
3.1. General overview 

The previous chapter introduced data modelling primarily based on biophysical principles. In 
those approaches, one assembles equations to model the data, solves them, simulates an expected 
signal, compares it with the observed signal step by step, and changes the parameters of the models 
to match the data better. The equations used are derived from basic laws of physics, such as protein 
thermodynamics and kinetics, Arrhenius formalism, and the Eyring law. These methods are powerful 
in providing mechanistic insights into the underlying physical processes, such as protein unfolding 
pathways, reaction mechanisms, or aggregation pathways. Yet, they are limited in their ability to 
grasp complex patterns in the data, since every unexplained variability in data must be carefully 
described mathematically and properly modelled alongside the underlying model. In contrast, in 
many protein engineering tasks, the patterns in the data can be too subtle, intricate, or time-
consuming to be modelled explicitly with a set of well-defined equations. For instance, while in 
theory we can simulate the effect of individual amino acid substitutions on protein function (to a 
certain extent) based on physical principles, scaling up such modelling to large datasets is 
prohibitively expensive. Moreover, accurately modelling certain effects in simulations, such as 
enthalpic contributions to free energies or protein interactions with the environment, is currently 
beyond the reach of existing approaches (31).  

More recently, an alternative group of methods for modelling biological data has emerged 
whereby the equations are generated at scale, within a specific general mathematical framework, 
with little or no use of laws of physics (19). Such equations typically have simple structures but 
consist of many more parameters (often millions, in contrast to several dozens, as is the case, for 
example, of CalFitter models) whose values are determined by fitting much larger sets of data, often 
thousands of instances. This parameter determination, often referred to as training, is implemented 
according to a set of strict rules to ensure that the final equations capture generalisable patterns in 
the data instead of simple memorisation of the data. The domain that develops such methods is 
called machine learning. This chapter introduces the main principles of machine learning and 
discusses our contribution to advancing machine learning methods for various protein engineering 
tasks. 

3.2. Machine learning methodology 
Machine learning (ML) primarily aims to learn patterns directly from available data and 

leverage this knowledge to make predictions or explanations for new data. It uses mathematical 
functions of a general form that depend on many parameters. The values of these parameters are 
then learned using the available data, often through iterative minimisation of the error, similar to the 
data-fitting protocols covered in Chapter 2. The main difference of this approach compared to low-
parameter modelling discussed in Chapter 2 is a much larger search space of possible functions 
explored to describe the data, as the models are no longer constrained by leveraging specific laws 
of physics. To make sure that only meaningful patterns are captured, only part of the data is typically 
used for fitting the parameters, and the remaining part is used for evaluation of generalisability, in 
contrast to low parameter modelling, where the entire dataset is used for fitting the model. This 
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pipeline is quite universal and can thus be applied to tasks and datasets for which we might not have 
any explicit mechanistic description of the process, e.g., for predicting melting temperatures of 
proteins from protein sequences, effects of mutations on protein stability or solubility, or types of 
protein binding pockets. The only major requirement is the availability of a data set of instances 
based on which the patterns could be identified. 

If such a dataset is available, every data point there needs to be represented as a vector of 
numbers, commonly referred to as features. Features may be obtained through a wide variety of 
means (48). For example, protein sequences can be turned into feature vectors by assigning each 
position in a sequence a vector of 19 zeros and a single “1” corresponding to the specific amino acid 
in this position. Features may also be derived, examples being simple amino acid counts, 
propensities of different residues to form secondary structures, conservation scores, or various 
physicochemical characteristics, to name a few.  

Once every data point in the data set is represented as a set of feature vectors, ML can be 
applied. Several different categories of ML problems exist. Supervised learning deals with methods 
for the task of predicting a particular property known as a label for each data point (Fig. 3A) (49). For 
example, a mutation in human protein can be labelled as "oncogenic” or “benign” or a protein 
sequence can be labelled as “soluble” or “insoluble”. Labels can form a set of classes (e.g., class 1: 
"oncogenic”; class 2: “benign”) or fall within a range of numerical values (e.g., protein yield in 
mg/mL), giving rise to two subtypes of supervised learning problems: classification problems 
involving labels with no inherent order (e.g., “oncogenic” or “benign”) and regression problems 
involving labels corresponding to numerical values (e.g., protein yields). The best practice in 
supervised learning is to split the available data into three disjoint subsets: a training set (used for 
fitting the model and determining the model parameters), a validation set (used for comparing 
different models and optimising model architectures), and a test set (only used for final evaluation 
as a representation of the future, “unseen” data).  

In the absence of labels, unsupervised learning can be applied, whose goal is usually to 
identify patterns in unlabelled data, e.g., by using clustering algorithms and data compression or 
projection methods (Fig. 3B) (49). More recently, the boundary between supervised and 
unsupervised machine learning has been blurred by the emergence of methods that can create 
labels synthetically – self-supervised learning (Fig. 3D). For example, in a data compression method, 
the label might be the input itself, and the algorithm may impose constraints (e.g., a bottleneck in 
the architecture) that force the model to learn a more compact data representation, as is the case 
of variational autoencoders (50).  

Finally, the algorithms that aim to learn the data distribution to generate new samples belong 
to a class of ML models called generative models (51). The most recent examples of this class 
include diffusion models (Fig. 3C), which create artificial labels by altering the input data, e.g. 
masking amino acids in protein sequences or adding noise to atom coordinates in protein 
structures, and learn to remove the alteration. Such a self-supervision approach turns out to be 
capable of learning useful characteristics of the data. In natural language processing, for instance, 
language models trained by predicting masked words manage to learn grammar and semantics to 
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generate sentences, and similar algorithms can thus be leveraged to generate new protein 
sequences, structures, or even protein ensembles (52). 

 
Figure 3. An overview of different machine learning approaches. Machine learning methods can be categorised into the 
following groups: (a) supervised learning methods aim to predict a specific label, (b) unsupervised learning methods 
typically find clusters in unlabelled data, (g) generative models learn the distribution of the training data to generate new 
instances corresponding to that distribution, and (d) self-supervised learning methods transform an unsupervised problem 
into a supervised problem by creating synthetic labels, e.g., masking part of the input. The figure is adopted from (20). 

 

The following subsections will cover different tasks in protein engineering that we have tackled 
by machine learning. In our studies, we have explored a range of ML algorithms, from classical 
methods, such as decision trees, random forests, extreme gradient boosting, K-nearest neighbours, 
to methods from deep learning, i.e., based on artificial neural networks. Both supervised and self-
supervised tasks were explored.  

3.3. Supervised learning for protein engineering 
In this subsection, we will cover two examples of supervised learning tasks we explored in our 

research: classifying pockets in enzymes into two types, buried or surface, and classifying mutations 
in human proteins related to oncology as oncogenic or benign. 

Classification of pockets in enzyme structures. Critical structural elements of enzymes are 
active sites, which are often located in surface clefts or internal cavities, facilitating chemical 
reactions. Various computational tools, such as Fpocket (53), CASTp (54), and P2Rank (55), may 
help identify and rank potential binding pockets, but their accuracy is limited by sparse structural 
annotations. When buried, these sites connect to the surface via access tunnels that regulate ligand 
movement and influence enzyme activity and specificity. Tunnels in enzymes with buried active sites 
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allow the entry of substrates and the release of products, thus contributing to the catalytic 
efficiency. Targeting the bottlenecks of protein tunnels thus represents a powerful protein 
engineering strategy (56). Our colleagues recently developed a set of software tools CAVER for 
constructing and analysing the tunnels connecting a buried pocket to the surface and intended to 
apply this tool at scale, to thousands of proteins, to better understand structural determinants of 
enzyme activities (57). To this end, they required an efficient algorithm for discriminating between 
buried and surface pockets, as CAVER is sensitive to the starting point, and calculating tunnels is not 
applicable to surface pockets. However, none of the pocket features produced by Fpocket was 
sufficient to classify the pocket type, and no other tool existed to tackle this task. 

Therefore, the main goal of our contribution was to create a predictor capable of assessing and 
differentiating between buried and surface-exposed protein pockets based on the features 
produced by Fpocket. In total, 20 features readily available from Fpocket were used, e.g., total 
surface area, volume, mean local hydrophobic density and others. For the training of the predictor, 
we manually labelled 200 pockets by an expert. Pockets were categorised into three classes: buried, 
surface, and borderline cases based on visual inspection of protein structures. We further analysed 
the distribution of the Enzyme Commission (EC) classes in the dataset to negate any bias in the EC 
class distribution. Given the small dataset size and heterogeneous features, we tested a range of 
ML-based algorithms, including the Support Vector Machine (SVM), K-Nearest Neighbour (KNN), 
Shallow Neural Network (ANN), Gaussian Naive Bayes, and Random Forest. In each case, we tuned 
hyperparameters by a grid search with five-fold cross-validation. We also explored whether 
Kolmogorov–Smirnov feature filtering could improve the accuracy of predictors. For final validation, 
we employed an independent test set of 100 manually labelled additional samples, mirroring the 
class distribution of the training set. For the three-class problem, the ANN achieved the highest 
accuracy (54%) and F1 score (50%), and the second-highest 1-FPR score (67%) on the test set. ANN 
was also among the top-performing models for the two-class prediction, with all three metrics of 
70% on the test set. The Python code for the pocket discrimination predictor is available at 
https://github.com/Faranehhad/large-scale-pocket-tunnel-annotation.git. 

 
Figure 4. Examples of tunnels in proteins leading to the active site identified with the automated pipeline. The sample 
proteins are Pyrroloquinoline-quinone synthase (1OTW, left); Haloalkane dehalogenase LinB (2BFN, centre); and 
Cellobiohydrolase (2RFY, right). 

 

https://github.com/Faranehhad/large-scale-pocket-tunnel-annotation.git
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The optimised and validated pipeline was then applied to annotate more than 17,000 cognate 
enzyme–ligand complexes, creating the first-of-a-kind dataset of this scale (Fig. 4). Further analysis 
of ligand un-/binding energies revealed that the top priority tunnel had the most favourable energies 
in 75% of cases, and a simple geometry analysis could correctly identify tunnel bottlenecks only in 
50% of cases. Thus, the pipeline gave essential information for the interpretation of results from 
tunnel calculation and energy profiling in mechanistic enzymology and protein engineering.  

Classifying mutations in human proteins. Over 19 million cancer cases are diagnosed 
annually, and this number continues to rise3. As standard treatments vary in effectiveness across 
cancer types, understanding tumour biology is critical, especially for hard-to-treat cases. 
Personalised high-throughput profiling using next-generation sequencing enables comprehensive 
analysis of biopsy samples and has generated vast data on cancer-specific gene alterations. In many 
cases, after a cancer diagnosis, treatment is a race against time, and with the variable success rates 
of conventional “one size fits all” therapies, fast and accurate interpretation of molecular findings 
and assessment of their actionability are of vital importance, especially in difficult-to-treat cases. 
This is where an automated precision oncology approach can be most useful as it can optimise 
treatment strategies, improve outcomes, and increase the quality of life for many patients. However, 
a major gap remained between these alterations and their proven effects on protein function. 

To fill this gap, we developed a bioinformatics pipeline for rapid analysis of missense 
mutations in oncogenic proteins (Fig. 5), assessing their impact on stability and function (58). The 
predictive part of the pipeline is a machine-learning-based tool trained on 1073 single-point mutants 
in 42 proteins. For a set of known cancer-related human proteins, we assigned the labels 
“Oncogenic” or “Benign” based on the annotations from a range of publicly available databases, 
including gnomAD, ClinVar, OncoKB, The JAX Clinical Knowledgebase, Personalized Cancer Therapy 
Knowledge Base, cBioPortal, and the DoCM database (59–62). The entire dataset of proteins and 
mutations was then annotated by the computational biology-based pipeline of PredictONCO to 
produce a set of sequence-based (essentiality of, conservation, domain, the PredictSNP score (63), 
the number of essential residues) and structure-based (FoldX and Rosetta ddg_monomer scores, 
ligand-binding pocket, and the pKa changes of essential residues obtained from PROPKA3) features. 
The final training dataset with features and labels is available at 
https://zenodo.org/records/10013764.  

For the training of a predictor, 20% of the data was kept aside for testing, chosen randomly but 
grouped by positions to ensure that no specific position in a protein from the test set appears in the 
training set. We explored a range of methods, with the extreme gradient boosting algorithm 
producing the best results (AUC ROC of 0.97 and 0.94, and the average precision of 0.99 and 0.94 
for structure-based and sequence-based predictions for the test set, respectively, Fig. 6). We 
demonstrated the applicability of the tool by presenting its usage for variants in two cancer-
associated proteins, cellular tumour antigen p53 and fibroblast growth factor receptor FGFR1 (64). 

 
3 https://www.wcrf.org/preventing-cancer/cancer-statistics/worldwide-cancer-data/ 

https://zenodo.org/records/10013764
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To facilitate access and analysis of cancer-related mutations, we also implemented the pipeline as 
a web server (65), which is freely available at https://loschmidt.chemi.muni.cz/predictonco/. 

 

 
Figure 5. The entire workflow of the PredictONCO tool. The only required input is a protein and a mutation (orange boxes). 
The grey boxes show pre-treatment steps done manually in advance to prepare high-quality protein structures as a reliable 
starting point for the calculation. Once the calculation is submitted, multiple analyses are executed. The sequence-based 
analyses are performed for all mutations (dark blue boxes), such as fetching annotations from public databases, 
pathogenicity prediction, conservation prediction and HOPE. For mutations in the catalytic domains with available 3D 
structure, structure-based analyses are additionally performed (light blue boxes), such as stability and pKa prediction, 
pocket detection, and virtual screening. Once all the features are collected, the effect of the mutation is predicted using an 
XGBoost-based effect predictor (green box). The yellow boxes briefly describe outputs collected from each analysis. The 

figure is adopted from (65). 

 

https://loschmidt.chemi.muni.cz/predictonco/
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Figure 6. The performance of the structure-based (STR) and sequence-based (SEQ) PredictONCO models on the held-
out test set of 213 and 89 mutations, respectively. Left: The area under the receiver operating characteristic curve (ROC 
AUC) and average precision values show strong performance for the probability of the oncogenic effect of a mutation 
returned by the predictors. The remaining values were calculated for the cutoff of 0.50 applied to this probability. Right: The 
comparison to the individual tools and the state-of-the-art method ESM variants according to ROC AUC and average 

precision metrics shows overall better performance in both SEQ and STR evaluations. The figure is adopted from (65). 

 

3.4. Self-supervised learning for protein engineering 
Despite the significant potential of machine learning in predicting specific labels, unlabelled 

protein datasets possess incredible potential in guiding protein engineering. In our research, we 
explored several tasks related to such methods: identifying evolutionary trends in protein 
phylogenetic trees to suggest promising mutations; leveraging the geometry of the latent space of a 
neural network to suggest ancestor-like protein sequences; and comparing protein dynamics in the 
presence and absence of a potential drug candidate for challenging disordered peptides.  

Protein successor prediction. Protein evolution can be distilled into two key steps: the 
occurrence of amino acid mutations, e.g., from errors in DNA replication during cell division, 
exposure to mutagens, or viral infections, and the subsequent fixation of these mutated proteins 
within a population based on their impact on fitness. While this two-step model provides a useful 
framework, it remains primarily descriptive rather than predictive as it cannot be used to accurately 
forecast future mutations or their likelihood of fixation. Consequently, evolutionary predictions 
generally focus on projecting adaptive processes, rather than mutations at the amino acid level and 
concentrate on the evolution of infectious diseases, cancer, or other somatic processes at the 
phenotypic level.  

In the protein engineering domain, ancestral sequence reconstruction (ASR) was shown to be 
a powerful method for suggesting protein variants by leveraging phylogenetic trees and sequence 
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alignments to trace evolutionary changes and infer ancestral protein sequences. Through the 
reconstruction of evolutionary histories, ASR can identify specific positions in protein sequences 
where selective pressures have driven adaptation. This approach is a very effective strategy not only 
for thermostability engineering (66), but also for improving other protein characteristics such as 
specificity, activity, or expression (67). 

However, ASR is inherently limited to exploring the evolutionary past of a sequence. In this 
study, we hypothesised that integrating evolutionary insights with physicochemical properties, such 
as descriptors in the AAindex database (68), holds significant promise for predicting evolutionary 
successors that conform to physical evolutionary pressures, possibly revealing promising protein 
variants. To explore this hypothesis, we proposed a novel approach called the Successor Sequence 
Predictor (SSP), designed to find trends in phylogenetic trees based on AAindices and propagate 
those trends for protein design (69). SSP reconstructs the evolutionary history of a given protein 
sequence and suggests amino acid substitutions by projecting observed evolutionary trends through 
a range of carefully selected physicochemical descriptors (Fig. 7). Introducing these predicted 
mutations is expected to enhance specific protein properties.  

We tested SSP using various published datasets and observed intriguing results for various 
properties. In the case of thermostability, SSP made 14 predictions for the cold shock protein CspB, 
eight of which had a stabilising effect on the protein (ΔΔG < 0), while the remaining six were neutral 
with ΔΔG values between 0 kcal/mol and 1 kcal/mol, including the highest increase in melting 
temperature of + 16.6°C. We also applied SSP to make predictions for aminoglycoside 3'-
phosphotransferase, which confers resistance to aminoglycosides with antibiotic properties. SSP 
made 221 predictions with a significant improvement in the average enrichment value across a set 
of antibiotics compared to the baseline random selection, thus demonstrating predictive prowess 
in the context of enhancing enzymatic activity. Another validation of mutations for the solubility 
dataset of the levoglucosan kinase showed a higher likelihood of a positive or neutral effect on the 
solubility of the protein. Thus, our study showed that the SSP approach could enhance specialised 
proteins by predicting mutations that may improve desired properties, such as thermostability, 
activity, and solubility.  

Leveraging latent spaces to produce ancestor-like proteins. Recent advances in analysing 
multiple sequence alignments (MSAs) of homologous proteins leverage deep learning models, such 
as diffusion models, GANs, and variational autoencoders (VAEs), to extract meaningful patterns and 
generate novel protein variants. Among these, VAEs are particularly intriguing due to their ability to 
model latent space representations that capture biophysical and evolutionary properties (50). VAEs 
have already proved useful in several supervised learning applications, including predicting protein 
structures, discovering novel drugs, and predicting protein functions. More recently, the latent 
space of the variational autoencoders was shown to capture the biophysical properties of protein 
variants and the phylogenetic relationships within protein families (70). In particular, the authors 
observed that ancestors tend to be positioned close to the origin of the latent space. However, the 
study did not go further to offer any strategy that would allow exploiting these relationships to 
generate new proteins from the latent space. 
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Figure 7. A generalised overview of the Successor Sequence Predictor. Initial curation and filtering of the target protein 
dataset include mining public databases and filtering out the obtained multiple sequence alignment (A). The sequences 
are then clustered by sequence identity (B), and multiple phylogenetic trees are constructed by sampling sequences from 
different clusters, along with ancestral sequence reconstruction for the nodes on the trees (C). For each tree and each 
position in the reference sequence, linear regressions for ten pre-selected AA indices are calculated along the evolutionary 
trajectory (D). If the directional trends in the data were detected, the closest matching amino acids that would continue the 
trend are assigned and reported (E). When several AA indices show trends, the mutations are marked as Site Agreeing 
Predictions (if different amino acids are suggested) or Mutation Agreeing Predictions (the same amino acid is suggested). 
The figure is adopted from (69). 
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Building on this observation, we hypothesised that a simple straight line connecting a query 
protein sequence and the origin of the latent space may suggest protein variants with ancestral-like 
properties, e.g., improved protein stability and preserved function. To test this hypothesis, we 
adopted the approach suggested previously (70) and augmented it with the straight-line evolutionary 
strategy (13). In addition to suggesting the strategy to generate protein sequences, we also 
implemented several modifications. First, we introduced the step of mined sequences with 
preserved catalytic residues using EnzymeMiner to obtain an MSA of functionally related proteins. 
Second, we introduced a reference sequence that is used as a template to narrow down the MSA to 
filter out distantly related sequences and reduce the number of insertions and deletions in the MSA. 
Third, we trained a VAE and explored several metrics to measure its capacity to generate protein 
sequences and capture the phylogeny in the constructed latent representations.  

As a result of three rounds of experimental validation and protocol optimisation, we applied 
the straight-line strategy, reconstructed protein sequences with the VAE-decoder part, and 
generated 20 new ancestral-like designs of haloalkane dehalogenases, sharing as little as 67% 
sequence similarity to known sequences (Fig. 8). Using state-of-the-art microfluidics devices 
developed earlier (71), we subjected the designs to a thorough experimental characterisation, 
including the determination of their biophysical properties and substrate specificity profiles (Fig. 9). 
Obtained enzymes showed up to a 9 °C increase in melting temperatures and an average 
improvement of 3 °C across all soluble variants. We also observed a boost in activity, up to 3.5-fold 
for the most stable variant, whereas most of the other expressed variants showed activity levels 
comparable to benchmark enzymes. Our study demonstrated that the structure of the latent space 
and the generative potential of VAEs can guide the sequence search and designing novel soluble and 
functional proteins with enhanced stability. Moreover, to facilitate access to our methods for a wider 
audience of protein engineers, we integrated both the SSP and VAE design modules in our easy-to-
use web server FireProtASR (https://loschmidt.chemi.muni.cz/fireprotasr/).  

Analysis of complex protein dynamics with CoVAMPNets. Computational study of the effect 
of drug candidates on protein dynamics is quite challenging due to the data complexity. A popular 
approach to studying such effects is running molecular dynamics (MD) simulations and identifying 
notable conformational states by building so-called Markov state models (MSMs) (72). Under the 
assumption of the dynamics being Markovian (memoryless), these models cluster the 
conformational space into states, preserving the Markovianity of the transitions and estimate the 
equilibrium distribution and transition rates between the states. In general, selecting the variables 
derived from MDs for clustering is of critical importance for successful creation of an MSM and was 
often performed manually. Recent progress in variational approaches for conformational dynamics 
allowed scoring different MSMs, e.g., based on their ability to approximate the slowest modes of the 
dynamics, thus facilitating the development of automatic frameworks for the identification of Markov 
states (73). A powerful framework based on deep learning is VAMPnet, a neural network that learns 
a probabilistic assignment of each simulation frame to individual states in an unsupervised manner 
by maximising a variational score representing the quality of the model approximation of the slowest 
modes (74). 

https://loschmidt.chemi.muni.cz/fireprotasr/
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Figure 8. The summary of the straight-line evolutionary strategy for the Haloalkane Dehalogenase engineering case 
study. (A) Straight-line evolutionary strategy reconstructed 100 sequences along the trajectory from query embedding to 
the latent space origin (black dashed line), based on training on the aligned sequences of functionally related proteins 
(blue dots). The embeddings of previously characterised ancestors (grey points 1–5 denoting AncHLD variants) and 
engineered DhaA variants (magenta spectrum points) are mapped closer to the latent space origin, supporting the idea 
behind our ancestral generation strategy. (B) A detailed view of the previously engineered DhaA variants. While there is no 
strong correlation between the positions in the latent space and the stability gain (melting temperature difference, ΔTm) of 
variants up to 28 °C, some of the most stable points are situated closer to the origin. (C) The statistical profile of 100 
sequences from the straight-line evolutionary strategy in rounds 1-2 of the selection. The ancestors are numbered 1 to 100 
based on their order in the VAE-generated latent space, with lower numbers being closer to the starting sequence and 
higher numbers representing more divergent designs closer to the latent space origin. Number 0 corresponds to the 
reconstruction of the original embedding of the query sequence. The vertical lines represent sequences selected for 
experimental characterisation: dashed line variants were successfully expressed, dotted line variants were not soluble. 
The figure is adopted from (13). 
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Figure 9. Experimental characterisation of selected variants from the straight-line evolutionary strategy for 
Haloalkane Dehalogenase engineering case study. (A) Far-UV circular dichroism spectra probing the correct folding and 
secondary structure of the variants. (B) Normalised thermal denaturation curves from nanoDSF spectroscopy with 
apparent melting temperatures (Tm

app) are shown above the curves. (C) The dependence of specific activity on temperature. 
The heatmap represents the relative activity of individual variants. (D) The score plot shows the first principal component 
PC 1 explaining 84.9% of the data variance in substrate specificity profiles, which compares VAE-based designs (in colour) 
with previously characterised wild-type haloalkane dehalogenases (grey) in terms of their activity with 27 substrates being 
determined by the MicroPEX method (71). The highlighted range between DmbA and LinB corresponds to the ranges of 
values observed for previously characterised AncHLD variants. The values of PC1 above this range imply that the overall 
activity of the corresponding designs was higher than that of previous AncHLD variants. The figure is adopted from (13). 

 

In one of our research projects, we were interested in assessing the effects of the ongoing 
phase 3 therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the 
disordered Aβ42 peptide involved in Alzheimer’s disease. Alzheimer’s disease is the fifth leading 
cause of death globally and the fourth cause of disability in people over 75 years (75). Aβ peptides 
play a major role in the development of the disease, although the mechanism behind their toxicity is 
still debated. To make matters worse, Aβ peptides are intrinsically disordered and difficult to study 
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both experimentally and computationally. Intrinsically disordered proteins do not adopt a single well-
defined structure, but rather exist as ensembles of conformations with similar energies, 
complicating the construction of a good MSM. 

The application of VAMPnets to the analysis of Aβ42 trajectories already showed great 
potential in producing robust MSMs for quantification of the Aβ42 kinetics and equilibrium properties 
previously (76). Thus, we embarked on the development of a comparative Markov state analysis 
(CoVAMPnet) framework to quantify changes in the conformational distribution and dynamics of a 
disordered biomolecule in the presence and absence of small organic drug candidate molecules 
(15). To this end, we generated molecular dynamic trajectories using enhanced sampling and 
computed an ensemble of soft MSMs for each system by training VAMPnet neural networks (Fig. 10). 
Then, using our novel alignment method, these ensembles were aligned to identify similar 
conformational states across the different systems based on a solution to an optimal transport 
problem. Finally, we applied explainable AI, in particular a discriminative analysis of aggregated 
neural network gradients, to assess the directional importance of inter-residue distances for the 
assignment to different conformational states (Fig. 11).  

In the case of Aβ42 trajectories, our CoVAMPnet analysis revealed that both TMP and SPA 
preserved more structured conformations of Aβ42 by interacting nonspecifically with charged 
residues. SPA impacted Aβ42 more than TMP, protecting α-helices and suppressing the formation of 
aggregation-prone β-strands (77). While our experimental data suggested that TMP/SPA might also 
target biomolecules other than Aβ peptides, the CoVAMPnet approach can be applied to study and 
compare any related molecular systems. It can be especially useful to study the impact of small 
molecules on intrinsically disordered proteins and peptides, whose quantitative analysis can be 
extremely difficult. 

 

3.5. Outlooks 
Our studies leveraging supervised and self-supervised approaches have reconfirmed a 

tremendous potential for the use of machine learning methods in protein engineering. However, they 
have also identified major limitations hindering the progress in the domain, most pressing of which 
are as follows: (i) ML heavily relies on data availability and quality, and protein data are notoriously 
difficult to work with; (ii) constantly expanding datasets and changing data splits make benchmarking 
extremely time-consuming; and (iii) reporting standards for ML studies in biology are yet to be 
improved, further complicating reproducibility and comparison. In what follows, we will provide more 
details on each of those limitations and our contributions to overcoming them.  
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Figure 10. Analysis of conformational states learned using VAMPnets on the adaptive simulations and their evolution 
in time. (A) Properties of the states. For each system, we report: the free energy surface projected on the first two tICA 
dimensions (grey maps); flux diagrams projected on the same tICA space, where each state is represented by a coloured 
circle with the area proportional to the state probability, and the arrows indicate the mean first-passage times TM between 
the states, with the thickness proportional to the transition probability; equilibrium distribution of the states (the bars 
represent the 95th percentile of values from the ensemble of 20 learned models); superimposition of 20 representative 
structures from each state; and global mean secondary structure content of each state. (B) Distribution of the CoVAMPNet 
learned states in time (top) and the number of frames available at each time point (bottom). The adaptive sampling 
trajectories were aligned in time and concatenated. The state probability at a given time point was computed as the average 
soft assignment of all available frames at this time point. From left to right, the state assignments evolve from the beginning 
to the end of the simulation time. The states are numbered and colour-coded consistently across the entire panel. The 
figure is adopted from (15). 
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Figure 11. Gradients of the state assignment probabilities of the learned variational Markov state models using 
VAMPnets. Each 42 × 42 heatmap shows the ensemble-averaged gradients of the model probabilities for the corresponding 
system and state with respect to the input inter-residue Cα distances. The colour indicates how the probability of the 
particular state would change for an input frame if the distance between the particular pair of residues increased (blue: the 
probability of the state assignment would increase; red: decrease). The presented visualisations correspond to ensemble-
averaged gradients evaluated and aggregated over 10,000 randomly selected simulation frames. The figure is adopted from 
(15). 

Data availability. Protein-based datasets are challenging to work with for several reasons. 
First and foremost, protein engineering deals with enormous sequence spaces growing exponentially 
with the number of mutations in a protein to consider. But typical datasets used for training have only 
hundreds to thousands of labelled sequences. This limited data is sparse in exploring the mutational 
landscape and biased toward a few overrepresented proteins, greatly restricting ML model 
generalisation and extrapolation capabilities. Second, data often come from multiple sources with 
varying experimental biases, differing data normalisation practices, and inconsistent definitions of 
key protein properties, such as stability, solubility, or activity (78). These inconsistencies complicate 
dataset construction and can lead to contradictory labels for the same protein, thereby affecting ML 
reliability. Third, certain mutational types, such as alanine scanning, are overrepresented in 
datasets, introducing biases that impact ML predictions. Finally, many datasets are proprietary or 
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published in unstructured formats, limiting availability for ML training. We embarked on addressing 
those limitations in two related domains: protein stability and protein solubility. Our main 
contribution was two novel databases: FireProtDB and SoluProtMutDB for protein stability and 
solubility changes upon mutation, respectively (26, 27) . 

Naturally occurring proteins face in maintaining stability under biotechnologically relevant 
conditions, such as elevated temperatures or high salt concentrations. Experimental screening of 
stabilising mutations is often labour-intensive and costly, which makes the use of computational 
predictors highly desirable to narrow down potentially beneficial mutations. Yet, existing databases 
contained outdated, inaccurate data and lacked advanced usability features. To address these 
drawbacks, we created FireProtDB, a manually curated source for experimental thermostability data 
for single-point mutants collected from ProTherm (79), ProtaBank (80), recent literature, and our own 
laboratory data (26). The key contribution of FireProtDB was a comprehensive, high-quality, and 
systematically curated dataset of over 15,000 protein stability changes, accessible through a user-
friendly web interface (Fig. 12). This interface supports interactive exploration of individual mutations 
at the protein or mutation level and the construction of customised, ML-friendly datasets utilising 
advanced search, filtering, and export. All entries are carefully annotated to indicate their origin from 
existing datasets, allowing developers to create distinct training and testing datasets. FireProtDB 
thus filled a crucial gap by offering a freely available resource that facilitates data-driven approaches 
in protein engineering, particularly by enabling the creation of reliable datasets for the validation and 
benchmarking of stability prediction tools. The database is available at 
https://loschmidt.chemi.muni.cz/fireprotdb/. 

In addition to protein stability, protein solubility is another key factor in protein research and 
applications. It is also connected to protein aggregation, which is linked to serious human diseases. 
Structural determinants governing protein solubility changes upon mutations are poorly understood, 
and the available data on this topic are scattered across the literature. To address this gap, we 
created SoluProtMutDB as the first manually curated database that compiles protein solubility 
change data upon mutations from various published sources (27). This extensive collection aims to 
facilitate better understanding and prediction of mutational effects on solubility, benefiting 
researchers in protein engineering and machine learning tool development. Our main contribution 
was assembling a large, high-quality dataset containing approximately 33,000 measurements 
covering 17,000 protein variants across 103 different proteins. The database integrated previously 
published solubility datasets along with thousands of new data points from recent studies, including 
deep mutational scanning experiments (27). It also incorporated detailed experimental conditions 
that affect protein solubility and underwent extensive manual curation to improve data quality for 
machine learning applications. This curated database is now available online 
(https://loschmidt.chemi.muni.cz/soluprotmutdb/) and serves as a valuable resource for designing 
improved protein variants and developing computational predictors for mutation-induced solubility 
changes, filling an important need for structured solubility data in protein science. 

  

 

https://loschmidt.chemi.muni.cz/fireprotdb/
https://loschmidt.chemi.muni.cz/soluprotmutdb/
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Figure 12. Examples of the user interface of SoluProtMutDB. Top: a table with search results. For clarity, only the most 
important columns are displayed by default: protein names, curation flags, mutations, solubility effects, and host cells. 
Middle: The advanced search with an example of a filtering protocol. In this example, the database will find measurements 
from OptSolMut and PON-Sol datasets with enhancing or deteriorating solubility effect. Bottom: visualisation of mutations 
in a protein with a known 3D structure. User-selected mutations can be highlighted in the structure. In this example, the 
mutated positions resulting in a significant change in solubility are highlighted in yellow. The database is available at 
https://loschmidt.chemi.muni.cz/soluprotmutdb/. 

https://loschmidt.chemi.muni.cz/soluprotmutdb/
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Figure 13. Examples of data leakage in a common benchmark for protein-protein interaction engineering. The two 
phosphorylase homooligomers, taken from DIPS, a standard dataset for training and validating machine learning models 
for protein-protein interactions. Both complexes are composed of five identical proteins (highlighted with colours) and have 
very low sequence similarity (26.5%). Despite the sequences in the complexes being different, the secondary structure of 
the chains, the topology of the interactions, as well as the 3D structure and the amino acids at the interfaces are highly 
similar across the entries (iDist score below 0.04, the near-duplicate threshold; iAlign p-value < 10−6). Therefore, recent 
machine learning research for protein docking and interface prediction employed data splitting, resulting in data leakage. 
Figure is taken from (81). 

Benchmarking. A fair comparison of the performance among state-of-the-art tools is critical 
in any machine learning workflow. With the growing number of computational web-based tools 
available for predicting the effects of mutations, e.g., on protein stability, benchmarking against 
these predictors becomes a major bottleneck. Researchers face difficulties conducting large-scale 
evaluations due to diverse input formats, overlapping training and test datasets, limited availability 
of some predictors as web services, input size restrictions, variable response times, and occasional 
downtimes. To address these issues, we developed BenchStab, an open-source Python package and 
command-line tool that automates the querying of multiple online stability predictors and collects 
their results efficiently, enabling straightforward benchmarking on user-defined lists of mutants (82). 
Our core contribution is providing a unified, modular platform that currently integrates 19 web-based 
protein stability prediction tools, facilitating automated, fast evaluation and comparison of different 
methods. BenchStab is extensible for integration of new predictors and promotes ongoing 
development in mutation stability prediction through open-source community contributions 
(https://github.com/loschmidt/BenchStab). 

We also curated an independent test dataset derived from FireProtDB, carefully filtered to 
avoid overlap with predictor training data, comprising 289 mutation records across 36 proteins with 
diverse structural folds and reported the performance evaluation of the web-based protein stability 
prediction tools integrated in BenchStab (https://zenodo.org/records/10637728). This evaluation 

https://github.com/loschmidt/BenchStab
https://zenodo.org/records/10637728
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reconfirmed limitations of existing predictors, such as bias towards destabilising mutations and the 
lack of a clear advantage for structure-based tools over sequence-only ones.  

In addition to creating a tool for benchmarking mutational predictors, we also investigated 
problems with common benchmarks used to evaluate mutational predictors for protein-protein 
interactions. When working on such a predictor ourselves (18), we observed that common data 
splitting strategies based on protein sequence or metadata similarity introduced substantial data 
leakage (Fig. 13). This leakage caused overly optimistic assessments of model generalisation and 
unfair benchmarking because test interactions often had near-duplicates in the training data, 
sometimes leading to leakage rates as high as 80% and compromising the evaluation of predictive 
models. To address this, we proposed an improved approach to dataset splitting based on 3D 
structural similarity of protein-protein interfaces using the iDist algorithm, which significantly 
reduced leakage and led to more realistic evaluations (81).  

Reporting standards. As the use of ML rapidly expands in genomics, proteomics, and other 
life sciences, the transparency and reproducibility of reported results are often limited due to 
insufficient details about dataset origin, optimisation strategies, model architecture, or evaluation 
protocols. The DOME recommendations (Data, Optimisation, Model, Evaluation) emerged as a 
structured checklist to guide authors toward comprehensive reporting, ensuring that critical aspects 
of data handling, algorithm design, and evaluation are explicitly described, thereby fostering 
reproducibility, accountability, and trust in ML-driven biological research (83). Building on these 
guidelines, we developed the DOME Registry, a web-based platform that enables researchers to 
curate, annotate, and access ML studies in a standardised manner (84). The registry was integrated 
with various tools, such as ORCID for researcher identity, APICURON for recognising curation efforts, 
and the Data Stewardship Wizard for a guided annotation workflow, offering a user-friendly interface. 
Each entry received a unique identifier and a DOME score, calculated as the proportion of 
recommendation items adequately addressed, fostering consistent evaluation standards across 
studies. 
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4. Discussion and Future Directions  
With the recent progress in computation and the growing availability of high-throughput 

experiments, data processing is becoming a major bottleneck in protein science. We are observing 
an unprecedented penetration of data modelling and analysis methods for protein engineering. Two 
major paradigms: (i) bottom-up low-parameter modelling and (ii) top-down machine learning 
methods, are increasingly enabling us to extract meaningful biological insights from the available 
and newly collected data. 

Low-parameter modelling allows well-controlled creation of readily interpretable models, 
capable of producing mechanistic insights into experimental signals, such as protein unfolding 
pathways, intermediate states, and Gibbs free energy barriers separating those states. Such insights 
can then guide protein engineers in the deep exploration of the mutational landscape. Machine 
learning methods approach the problem from a different perspective by building models from the 
available data. This perspective allows tackling much more complex and intricate phenomena but 
comes at a cost of lower interpretability and higher dependence on the available high-quality data.  

Our research focused on both approaches to modelling protein-related data. In the case of 
low-parameter modelling, we investigated the current challenges in analysing protein stability and 
thermal denaturation signals. We developed the workflow implementing fourteen different models 
of protein unfolding and implemented it as a user-friendly web server CalFitter (38, 47). The workflow 
is capable of globally fitting the data from different types of protein thermal denaturation 
experiments. It also included the new mathematical framework we designed for modelling the data 
from reheating experiments and singular value decomposition analysis as an optional first step in 
data processing (46). As far as machine learning methods are concerned, we explored a wide range 
of models, from classical small-scale to deep learning-based, and protein engineering tasks. We 
ventured into both supervised and unsupervised learning, learning from protein sequences (13), 
structures (18, 85), molecular dynamics trajectories (15), and mutational data (64, 65). We have also 
created new benchmarking tools for the community of machine learning developers (82), assembled 
two new databases (26, 27), suggested more robust dataset splits (81), and contributed to improving 
reporting standards for ML in biology (84, 86). 

Based on the current state of the art in computational protein engineering, it is difficult to 
foresee which one of those paradigms will dominate. In fact, the most promising direction might be 
a smart combination of the two. Such hybridisation can be implemented via several routes.  

First, physics-based constraints can be integrated into the design of an ML predictor. For 
example, employing SE(3)-invariant models when learning on protein structures is gradually 
becoming a standard to ensure that the final prediction will not depend on the shifts and rotations of 
the protein 3D model (87). In the tasks of predicting mutational effects, the anti-symmetry is often 
enforced at the level of the ML model architecture to guarantee that a reverse mutation will lead to 
the reverse prediction of its effect on protein properties such as stability, solubility or activity (88). In 
our CoVAMPNet study, the architecture of the artificial neural network ensured that the learned 
Markov state model is reversible and that the elements of the matrix representing the governing 
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Koopman operator (a linear operator propagating the state probabilities in time) are non-negative (15, 
89). 

Second, ML predictors can be used as part of physics-based models to account for the effects 
that are hard to model. For instance, enzyme kinetics models can include terms calculated by a 
neural network, leading to so-called neural ordinary differential equations (ODEs). Unlike traditional 
kinetic models, which require prior knowledge of all reaction mechanisms, neural ODEs learn 
correction terms from experimental time-series data, allowing them to capture hidden interactions 
and nonlinearities not accounted for in the theoretical models  (90). This leads to improved fitting of 
enzyme kinetic data by adapting the system dynamics during training. As a result, the method offers 
computational biologists a flexible tool to reconcile discrepancies between mechanistic models and 
experimental observations and allowing inference of unknown pathways and better modelling of 
complex enzyme-catalysed reaction networks. 

Third, these two paradigms can be combined on an equal basis. One such example is the 
recently suggested kinetics-informed neural networks (91). These are specialised feed-forward 
neural networks designed to solve ODEs constrained by kinetic models, often microkinetic models 
describing biochemical or chemical reaction networks. They integrate knowledge of reaction kinetics 
directly into the neural network training, allowing the network to fit kinetics data and estimate kinetic 
parameters simultaneously. This approach improves noise tolerance and performance compared to 
traditional optimisation methods and enables interpolation and prediction of unseen reaction 
behaviours. Another example is the possibility of combining the two paradigms on the level of the 
data. For instance, one can simulate protein ensembles using demanding physics-based molecular 
dynamics tools and then use such a dataset to train an ML-based tool (52, 92). Such a tool eventually 
provides a faster yet less exhaustive generation of protein conformations.  

Finally, the two paradigms can be applied side-by-side to provide two different perspectives on 
the task at hand. For example, predicting effects of mutations on protein stability can be done via 
force fields, such as FoldX (93) or Rosetta (94), or conservation scores from protein evolutionary data 
(95). Such predictions are not perfect and can thus be augmented with the predictions obtained by 
machine learning (96, 39, 82). While some evidence is starting to appear that combined these 
approaches may be able to compensate for each other’s weaknesses (97), this hypothesis is yet to 
be validated in large-scale experiments.  

In summary, advanced methods of data analysis are transforming protein research by enabling 
researchers to interpret vast and complex biological datasets with unprecedented depth and speed. 
They enable protein engineers to select protein targets, plan experiments, analyse the collected 
data, and formulate a hypothesis about biological phenomena of interest in a more informed way. 
These insights thus help accelerate the design of novel proteins with tailored properties and unveil 
the effects of mutations on health, leading to next-generation solutions across a range of domains, 
from medicine and diagnostics to bioengineering, synthetic biology, and materials science. Overall, 
advanced data analysis unlocks deeper insights into protein behaviour, bridging fundamental 
science with practical applications.  
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Exploration of Protein Unfolding by 
Modelling Calorimetry Data from 
Reheating
Stanislav Mazurenko1, Antonin Kunka1,2, Koen Beerens1, Christopher M. Johnson3,  
Jiri Damborsky   1,2 & Zbynek Prokop1,2

Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de 
novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. 
Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein 
unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and 
thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely 
used in curve-fitting, leading to a significant loss of information from experiments. To extract this 
information, we propose fitting both first and second scans simultaneously. Four most common single-
peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible 
transitions, and (iv) general three-state models. The method is validated using calorimetry data for 
chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant 
stabilized by protein engineering. We show that modelling of reheating increases the precision of 
determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. 
Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. 
The Matlab-based data fitting software tool and its user guide are provided as a supplement.

Understanding the mechanisms of protein folding and unfolding is of particular importance to identifying rela-
tionships between amino acid sequences and protein function and stability. These mechanisms are crucial for 
comprehensive protein engineering, ranging from the de novo design of proteins1,2 to analysis of different variants 
of existing proteins and their biological function3. It has also been reported that protein misfolding and aggre-
gation are primary causes of many human diseases4, and therefore knowledge of protein folding mechanisms 
may help to develop effective treatments. Although there have been significant advances in protein unfolding 
simulations in silico recently5, their experimental validation and measurement of protein stability usually have 
to be performed indirectly. Several experimental techniques can be used either separately or in combination, e.g. 
high resolution hydrogen-deuterium exchange methods6, nuclear magnetic resonance spectroscopy coupled with 
mass spectroscopy7 as well as less expensive methods such as differential scanning calorimetry (DSC)8, circular 
dichroism, and fluorescence spectroscopy5,9,10. In this paper, our main interest lies in DSC.

In DSC, the native state of the protein is perturbed by increasing the temperature and the difference in the 
heat capacity between sample and reference cells is recorded. This technique is one of the most powerful meth-
ods of protein folding analysis as it records the energetic profile of unfolding directly in terms of the amount of 
heat necessary to unfold a protein. As summarized in a number of reviews8,11–13, DSC studies have already had 
a great impact on the current understanding of protein stability and its energetic profiles. In particular, DSC has 
contributed towards (1) the currently accepted framework of temperature dependence in studies of protein sta-
bility, heat and cold denaturation14,15; (2) quantification of the interplay between equilibrium thermodynamics 
and kinetics13,16; (3) our understanding of structure-energy relationships in proteins, bridging the gap between 
experimental folding/unfolding data and in silico protein models and energy landscapes12,17,18; and (4) insights 
into aggregation mechanisms and the unfolding intermediates involved19.
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Since modern instruments now provide a high precision of DSC measurements, proper data analysis is crucial 
for understanding the data collected. The popularity of DSC measurements stems from the fact that complete 
energy profiles of unfolding can be analysed to quantify unfolding pathways by mathematical modelling and 
curve fitting. The modelling is usually based on the premise that protein stability comes in two different forms: 
thermodynamic stability in terms of the low fraction of unfolded protein versus folded protein in equilibrium and 
kinetic stability in terms of energy barriers separating the native and unfolded states16,20. A set of parameters for 
both types of stability can be obtained from analysis of DSC data since the thermogram data can be curve-fitted 
to analytically or numerically derived solutions for a given unfolding mechanism21–23.

It has also often been reported that proteins undergoing heating in DSC show unmistakable signs of irreversi-
ble transition24. Protein engineering of more stable variants usually involves an increase in melting temperatures, 
shifting the transition to the denatured state to higher temperatures where irreversibility more commonly occurs. 
Multi-domain proteins sometimes exhibit irreversible denaturation due to domain interactions upon unfolding 
and/or irreversible changes to secondary structures, e.g. decreased fractions of α-sheet and β-turn conformations 
and increased fraction of α-helix upon thermal unfolding of mouse monoclonal immunoglobulin25,26. To per-
form proper modelling of such irreversible denaturation, two techniques are commonly used, i.e. using different 
scan rates and reheated runs23. The latter is mostly used to draw inferences about reversibility in general by 
repeated unfolding/refolding experiments to high temperatures. Only a few articles have dealt with reheating in a 
more sophisticated way, e.g. for decomposition of peaks27, calculation of the proportion of irreversibly denatured 
protein at different temperatures28, and analysis of the DSC profiles of irreversibly denaturing multidomain pro-
teins29. While the abovementioned studies have provided valuable insights into the process of unfolding, only a 
limited amount of information from reheated runs has been captured for data analysis. However, curves obtained 
from reheated runs are usually recorded at the same number of temperature points as first runs, and thus can 
also be used for curve fitting. Their information content goes arguably far beyond that of the first run, and global 
fitting both runs can substantially enhance the modelling. Indeed, apart from the shape of the curve, reheating 
curves contain data on the change in the native state of a protein as a function of temperature.

This paper aims to demonstrate how data from reheating runs can help determine protein unfolding mecha-
nisms, such as the number of intermediate states, reversibility of each transition and alternative refolding path-
ways. We also give explicit equations for fitting curves from reheated runs and subsequent quantification of states 
in terms of activation energies, enthalpies, entropies, Gibbs energies, critical temperatures, and heat capacity 
changes. While the techniques presented in this paper are general and can be applied to various models, this 
paper only covers the four most common fitting models for apparent single peak transitions, namely a (A) fully 
reversible transition, (B) fully irreversible transition, (C) partially reversible transition with equilibrium at the 
first step, and (D) general three-state model. Fully reversible transitions are of little interest in the current frame-
work because their reheated runs are expected to almost precisely follow the first runs. Consequently, they do 
not contribute any new information apart from evidence of full reversibility. Conversely, as far as irreversible 
transitions are concerned, there seems to be no upper limit on the possible complexity of models describing 
protein denaturation. Hence, we limited ourselves to basic models demonstrating major derivation principles, 
according to which more complicated models may be extended to include reheating. It should be noted that pro-
teins demonstrating complex, e.g. multi-peak, DSC profiles of unfolding must be modelled with extra care since 
their dynamics may rarely be described by a precise kinetic model and may include aggregation with consider-
able complexity30. Moreover, the methodology used in this paper is based on discreet macrostates of unfolding 
pathways, such as native, intermediate, denatured states, etc., and statistical free energy surface models of micro-
states11 were beyond the scope of this study.

The suggested method was tested on DSC thermograms of wild type chicken egg lysozyme, wild type haloal-
kane dehalogenases LinB, DbjA and DhaA, the mutant DhaA115 thermostabilized by protein engineering and 
the mutant of Protein A from Staphylococcus aureus SpA. The proposed methodology was implemented as a 
graphic user interface for fitting based on MATLAB 2016a (MathWorks, United States). A link to a computer 
program calculating modelled heat capacities for the four basic mechanisms of unfolding as well as some more 
complex models is provided in DSC data analysis section of Materials and Methods. It can be used for global 
curve fitting for different scan rates and reheating.

Materials and Methods
Theoretical Basis.  Modelling of the cooling and reheating processes was similar to existing models for the 
first scan based on explicit formulas used to fit apparent heat capacity data. As far as experiments are concerned, it 
is often expedient to conduct cooling and reheating at rates similar to that of the first run to ensure that the mech-
anism of folding/unfolding is not disrupted by a change in scan rate. On the other hand, if no such disruption is 
expected, e.g. unfolding is fully irreversible, the cooling rate might not necessarily be the same as the scan rate. It 
is also advisable to verify that the temperature profile of the heating, cooling, and reheating is linear in time and 
does not have any artefacts, especially at high temperatures. An example of such a profile obtained for the analyses 
in this paper is given in Supplement 2.

The assumptions used for mathematical modelling were as follows:

•	 The process of unfolding was represented as a sequence of steps, e.g. the following equation

⟷ ⟶N I D (1)K k

stands for a three-state unfolding reaction, in which the first step (from native to intermediate states) is 
reversible and characterized by an equilibrium constant K, whereas the second step (from intermediate to 
denatured states) is irreversible with rate constant k.
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•	 At the beginning of the DSC scan, the fraction of protein in states other than N was assumed to be negligibly 
small.

•	 Each equilibrium constant K as a function of temperature was parameterized as follows:

= −
∆{ }K T G T

RT
( ) exp ( ) ,

(2)

where R is the gas constant and ∆G is the differences in Gibbs energies of the respective states:

G H T T S T( ) ( ) (3)∆ = ∆ − ∆ .

Here ∆H stands for the enthalpy change and ∆S is the change in entropy.
•	 Each rate constant k for an irreversible step was assumed to satisfy the Arrhenius equation:

=
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−
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(4)f

where Tf is the temperature at which k = 1 and E is the energy of activation for the respective step.
•	 The difference in heat capacities ∆Cp between different states was assumed to be independent of T. In the case 

∆Cp does depend on the temperature, the modeling will estimate ∆Cp value that will correspond to the aver-
age ∆Cp over the temperature range of transition31. Hence, ∆H and ∆S were functions of temperature and the 
ground level had to be defined. In line with previous studies, we selected Tm and Tf as reference points of the 
ground state for reversible and irreversible unfolding, respectively.

We will now briefly summarize the mathematical treatment of reheating for the four simple models of unfold-
ing. Further details and final equations used for fitting can be found in Supplement 1.

	(A)	 Reversible two-state denaturation

N D (5)K
⟷

In this case, there is an explicit equation for the heat capacity as a function of Tm, the melting temperature, 
i.e. the temperature at which half of the protein is denatured, ∆Cp, the constant change in heat capacity 
between the folded and denatured states, and ∆H, the enthalpy change at Tm. For totally reversible protein 
unfolding, the reheated run should match the first run. It should be noted that the modelled reheated run 
should follow the first run in any equilibrium fully reversible model of unfolding, e.g. multi-step model 
based on calculation of van’t Hoff ’s enthalpy9, given that the cooling scan is performed at the same scan 
rate as the first run. This follows from the fact that the rate of approaching a new equilibrium is the sum of 
the rates of folding and unfolding. Thus, if a fully reversible model is valid, and equilibrium is assumed to 
take place during heating, the time needed for a protein to refold is exactly the same as the time of unfold-
ing. Hence, there should be no change to the thermogram during reheating as compared to the first run.

	(B)	 Irreversible two-state denaturation

⟶N D (6)k

This model is often considered as a simplification of the more general Lurmy–Eyring model (see models C 
and D) when the intermediate state I is barely populated due to faster transition to state D during the scan. 
If we define the relative concentrations of the states as xn and xd = 1 − xn respectively, the equation for the 
heat capacity is as follows:

= + + − ∆ + ∆C T B B T x T C k T
v

x T H T( ) (1 ( )) ( ) ( ) ( ), (7)p n p n0 1

where

x T X T T v x T( ) ( , , ) ( ) (8)n n0 0= .

Here T0 is the initial temperature (low enough to ensure that xn = 1, i.e. all the protein is in the native state) 
and X(T2, T1, v) represents the decay factor of the native state relative concentration from temperature T1 
to T2 given the scan rate v. In other words, it shows the ratio of the protein concentration in the native state 
at temperature T2 to that at temperature T1 after changing the temperature at a constant rate of v. If the first 
run is stopped at temperature T′, the terminal amount of protein in the native state will be xn(T′) = X(T′, 
T0, v)xn(T0), or if we assume xn(T0) = 1, it is xn(T′) = X(T′, T0, v). Hence, after cooling to temperature T0 at a 
rate v, this amount is reduced to

′ = ′ − ′ = ′ ′ = ′ .x T T X T T v x T X T T v x T X T T v( ; ) ( , , ) ( ) ( , , ) ( ) ( , , ) (9)n n n0 0 0
2

Subsequent reheating results in a fraction of the protein in its native state equal to
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x T T X T T v x T T X T T v X T T v( ; ) ( , , ) ( ; ) ( , , ) ( , , ) (10)n
R

n0 0 0 0
2′ = ′ = ′ .

The heat capacity for the reheated run is then as follows:

′ = + + − ′ ∆ + ′ ∆ .C T T B B T x T T C k T
v

x T T H T( ; ) (1 ( ; )) ( ) ( ; ) ( ) (11)p
R

n
R

p n
R

0 1

	(C)	 Partially reversible three-state denaturation with equilibrium

⟷ ⟶N I D (12)K k

This is a more general model in which an irreversible step follows reversible unfolding. It is assumed that 
the rates of the reaction at the first step allow approximation of the step with equilibrium constant K. As 
in (B), we define the relative concentrations of the states as xn, xi and xd = 1 − xn − xi, respectively. Then, 
according to already published results23,32:
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There is one differential equation for xn left; thus one decay factor for the native state from T1 to T2 given 
the scan rate v as XI(T2, T1, v). Following the same logic as for model B, the terminal amount of protein in 
the native state after the first run up to temperature T′ will be xn(T′) = XI(T′, T0, v)xn(T0). After cooling to 
temperature T0 at rate v and reheating, the following equation applies:

x T T X T T v X T T v X T T v( ; ) ( , , ) ( , , ) ( , , ) (14)n
R

I I I0 0 0′ = ′ − ′ .

Here, we again assumed xn(T0) = 1. Thus, the formula for the heat capacity of the reheated run is the same 
as that for the first run but with xn

R substituted for xn. Direct numerical integration was used to calculate 
the decay factor XI as there is no explicit solution currently available.

	(D)	 General partially reversible three-state denaturation

⟶← →−N I D (15)k k k,1 1 2

This is a classical Lumry-Eyring model, in which the first step is not approximated by an equilibrium constant 
as in (C), rather it is parameterized by two rate constants: k1 for the forward reaction and k−1 for the reverse one. 
In this case, there are two differential equations governing the temperature changes in protein fractions that have 
to be integrated numerically21, and consequently, two decay factors that have to be found for the first, cooling and 
reheated scans.

More complicated models of unfolding can be supplemented with formulas for reheating according to prin-
ciples similar to those in the above four models. The computer software detailed in the supplementary material 
includes several more complex models apart from the four presented here. Nonetheless, difficult cases that require 
additional steps should be treated with caution since the model of unfolding may be exceedingly complex, e.g. 
include protein-protein interactions.

Protein sample preparation.  Chicken egg white lysozyme (lot BCBM6718V) was purchased from 
Sigma-Aldrich (USA). The His6-tagged haloalkane dehalogenases DbjA, LinB, DhaA and DhaA115 variant were 
overexpressed in Escherichia coli BL21 (DE3) cells as previously described33. Proteins were purified using Ni-NTA 
Superflow Cartridges (Qiagen) and a previously described method34. Protein samples were dialyzed to 50 mM 
potassium phosphate buffer, pH 7.5 and their concentration was determined by the Bradford assay from the cali-
bration curve of bovine serum albumin. Lysozyme concentration was determined spectroscopically by absorption 
measurement at 280 nm and using the calculated extinction coefficient of 37,970 M−1 cm−1. The purity of purified 
proteins was checked via densitometric analysis using a GS-800 Calibrated Densitometer (Bio-Rad, USA) after 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by Coomassie Brilliant Blue 
R-250 staining. The experimental data for the mutant of SpA (L20A + Y15W) were collected as given in the study 
of Sato and coworkers35.

DSC experiments.  DSC measurements were performed using MicroCal VP-Capillary DSC system (GE 
Healthcare, Sweden). Prior to scanning, samples were degassed under vacuum for 15 min using MicroCal 
ThermoVac (GE Healthcare, Sweden). DSC thermograms were determined by monitoring the difference in heat 
capacity in solution upon increasing temperature at a scan rate of 1 °C min−1, followed by cooling and subse-
quent re-heating of the sample at the same scan rate to the same final temperature as in the first scan. While this 
final temperature is a limitation of MicroCal VP-Capillary instrument, the method and software provided in the 
Supplement do not have this limitation and are able to model reheated runs for any temperature ranges. The time 
delay between the end of heating and start of cooling was set at zero. Moreover, temperature profiles of the DSC 
instrument were collected for different scan rates to ensure that the temperature changed linearly in time and no 
artefact took place at high temperatures upon the start of the cooling (see Supplement 2). Scans were performed 
under increased pressure (3 atm) and varying terminal temperatures for consecutive scans were determined from 
the initial thermogram obtained by heating the sample from 20 °C to 100 °C. All proteins used in this study 
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were extensively dialyzed against 50 mM potassium phosphate buffer, pH 7.5, and dialysis buffers were used 
for instrumental baseline scans and as reference samples. Protein concentrations used were typically between 
1.0–1.5 mg mL−1, corresponding to 70–105 µM and 30–45 µM for egg white lysozyme and the dehalogenases, 
respectively.

DSC data analysis.  After each data set was collected, the buffer-buffer baselines were subtracted and then 
concentration normalization was performed to obtain apparent heat capacity per mole of protein. The data were 
then exported into Excel and fed to a computer program written in MATLAB (MathWorks) for curve fitting 
(CalFitter). The software, source code, and binaries are freely available for download at http://loschmidt.chemi.
muni.cz/peg/software/calfitter. The program uses standard built-in functions from Optimization and Statistics 
toolboxes and allows its users to simultaneously fit data with reheating and different scan rates according to spec-
ified models, most basic of which were discussed in detail above. The developed software tool is freely available, 
and the link can be found in the Supplement.

The number of steps for unfolding mechanisms in each one of our examples was selected according to the 
following conservative rule: the first apparent peak can be modelled by at most two steps (models C and D), with 
the first step being reversible and the second step corresponding to the loss of reversibility, and each subsequent 
apparent peak in the thermogram is modelled by a single step to avoid over-fitting.

Results and Discussion
Here, we focus our attention on the four most commonly used models of protein unfolding (Table 1). For deri-
vation of the formula for reheating as well as a detailed explanation of parameters, please see the Materials and 
Methods section. The key challenge in distinguishing between the four models is that models A, B, and C are in 
fact limiting cases of model D. Model A represents the case when the rate constant k2 is negligibly close to zero. 
Model B is an approximation of model D when k2 ≫ k1 and k−1, in which case the apparent rate k corresponds 
to either k1 or k2K depending on whether k−1 is small or large compared to k1, respectively36. Finally, model C 
is the limiting case of model D when k1 + k−1 ≫ k2. Hence, the first step equilibrates at a much higher rate than 
the second step proceeds. Therefore, fitting the data from only one scan is usually insufficient for proper model 
selection and additional techniques have to be used to discriminate between the models, such as varying the 
scan rate. However, in some cases, even using different scan rates may still not be enough and reheating may be 
the only solution. The modelling of reheating also provides other advantages, such as a better estimation of the 
heat capacity change, but comes at a cost – alternative refolding pathways must be discarded first before a final 
decision about the models is made. In what follows, we will elaborate on the above mentioned points, discuss the 
possible procedure for final temperature selection and present results of data analysis for various proteins using 
the software provided in the Supplement.

Enrichment of scan rate dependence with reheating.  Initially, we compared the proposed method 
with the well-established technique of changing scan rates during DSC experiments and demonstrated how con-
sidering reheating may improve analysis of protein unfolding in both qualitative and quantitative ways.

One of the most commonly used approaches for the study of irreversible protein denaturation and verifica-
tion of the selected model is to vary the scan rate. Several important equations and analysis in this respect can be 
found in literature21,23,24,28,32. The basis of this approach is to change the scan rates in DSC experiments and then 
compare the apparent shifts in DSC curves/peak temperatures with those predicted by unfolding models being 
tested. However, this method has several drawbacks.

Although the scan rate dependence of the thermogram may indicate that model A is not valid, the main 
weakness of the method of varying scan rates is that it poorly discriminates between models B, C, and D. Indeed, 
consider the following example for the DhaA115 mutant (Fig. 1). Model B gives a reasonably good fit for different 
scan rates (Fig. 1A). However, this simple two-step transition model fails to explain the reheated runs (Fig. 1B). 
On the contrary, if reheating is taken into consideration and a global fit performed, model D turns out to be the 
simplest model that accounts for both the scan-rate dependence and reheated runs (Fig. 1C,D). The main reason 
for such behaviour is that there has to be a reverse component of unfolding at the first step to account for the 
reheating data. Hence, model B is not applicable. Due to a very fast drop in the reheated peaks, the first step can-
not be approximated by an equilibrium. Consequently, model C can also be eliminated. As a result, the simplest 
model that can explain the data with great approximation is model D, in which the first step is described by two 
rate constants.

Another potential problem of using different scan rates stems from the different heating rates, which might 
shift the model from C, in which equilibrium at the first step can be assumed, to D, in which no such simplifica-
tion can be made, due to different values of the rate constants adjusted by the scan rate k/v. For instance, equilib-
rium at the first step may no longer be attained if k/v of the second irreversible step is significant, thus driving the 
protein from the intermediate to final state more rapidly. Conversely, in the analysis of the reheated runs, all the 

(A) Reversible two-state denaturation 
⟷N D

K
(B) Irreversible two-state denaturation 

⟶N D
k

(C) Partially reversible three-state 
denaturation with equilibrium 
N I D

K k
⟷ ⟶

(D) General partially reversible three-state 
model without equilibrium  

⟶N I D
k k k1, 1 2← →−

Table 1.  Definition of the models and respective schemes for protein unfolding.

http://loschmidt.chemi.muni.cz/peg/software/calfitter
http://loschmidt.chemi.muni.cz/peg/software/calfitter
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parameters of the process except for the direction of heating/cooling remain the same, providing a better tool for 
model verification.

Finally, some difficulty in performing a global fit with different scan rates may occur as the corresponding DSC 
curves are usually shifted vertically and sometimes have different base slopes (notice the differences in heights 
of the peaks for modelled and actual data in Fig. 1 for different scan rates). Hence, to carry out a global fit, one 
should either shift them manually to some predefined starting point or introduce additional individual param-
eters for different baselines, which would further complicate the calculations. This is usually one of the main 
reasons for using limited information, e.g. dependence of the peak temperature on scan rate alone, rather than 
fitting the whole curves simultaneously. However, such problems do not seem to arise when analyzing reheated 
runs as they behave in a similar manner to first runs. Therefore, data gathered from different experiments with 
independent protein batches can be superimposed according to the first runs (Fig. 2).

Study of the heat capacity difference (∆Cp) effect.  It is often observed that the pre-transitional base-
line in a DSC thermogram is lower than the post-transitional baseline, indicating that there is a positive heat 
capacity difference between the denatured and native states. Such a phenomenon is usually attributed to hydra-
tion of the protein residues that are exposed to water upon protein unfolding37. Reheating runs provide addi-
tional information about the heat capacity difference between the native and denatured states. Indeed, different 
starting points of the reheated run can be indicative of ∆Cp accumulation during unfolding. This improves the 
precision of the estimate from fitting because no manual baseline subtraction is needed. On the contrary, this 
subtraction may decrease the information content of the data and distort the outcome of the fitting. The gradual 
shift of reheating data with respect to the first run with increasing terminal temperature is shown in Fig. 3. Since 
after the first run, some portion of the protein is irreversibly denatured, its heat capacity differs from that of the 
native state by exactly ∆Cp. The change in the slope of the reheating runs with temperature indicates that ∆Cp 
is temperature-dependent and this dependence can also be included in the modelling and estimated with high 
accuracy in global fitting to first and reheated runs.

Figure 1.  Fitting to different scan rates alone fails to account for reheating. (A) Global fitting of model B (blue) 
to DSC data (black) for denaturation of the DhaA115 mutant while disregarding reheated runs. The scan rates 
were 0.5 (◽), 1 (○) and 2 °C min−1 (◊). (B) Resulting reheated runs (pink) and actual reheated runs (black 
crosses) for a scan rate of 1 °C min−1. (C) Global fitting of model D (blue) to DSC data (black) for denaturation 
of the DhaA mutant with reheated runs. The scan rates were 0.5 (◽), 1 (○) and 2 (◊)°C min−1. (D) Resulting 
reheated runs (pink) and actual reheated runs (black crosses) for a scan rate of 1 °C min−1.
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Nonetheless, the proposed method revealed several drawbacks with regard to ∆Cp estimations. First, some 
vertical drift of the data between the two runs may occur due to errors in measurement rather than unfolding, 
which is why it is expedient to perform replicates of the runs for a higher precision of ∆Cp estimation. Moreover, 
unfortunately, the method usually fails to distinguish between ∆Cp of the two consecutive steps in models C and 
D if they contribute to the same apparent peak. This is because reheating usually highlights the difference in the 
native fraction of the heat capacity and irreversibly denatured one, which includes both ∆CpR and ∆CpI (or ∆Cp1 
and ∆Cp2 for model D). It should be possible to separate those two values if at least some fraction of the interme-
diate state can be preserved at the beginning of reheating. However, in this study, only a combined estimate of 
∆Cp was achieved.

In a similar way, aggregation and refolding might result in the same apparent ∆Cp changes upon reheating if 
the former takes place at unfolding temperatures. However, if two transitions are separated from each other in the 
thermogram, the reheating analysis may be conducted for each transition separately (for details, see the section 
“Selection of optimal points for reheating” below), which helps to quantify ∆Cp contributions by different steps 
during unfolding. For instance, ∆Cp of aggregation is likely to manifest during reheating from high temperatures, 
whereas ∆Cp of unfolding should appear during reheating from the peak temperature, similar to the case in Fig. 3.

Analysis of alternative refolding.  It has been reported in the literature that some proteins exhibit a DSC 
profile of reheating that does not correspond well to the first run, whereby more complex schemes of unfolding 
have to be applied38. Simultaneous modelling of the first and reheated runs may provide additional information 
regarding the extent to which the simple models agree with the data.

Figure 2.  Superimposition of data from different experiments according to the first run. DSC data of 
denaturation of the DhaA115 mutant: raw data (A) and superimposed data (B) allows global fitting without any 
additional parameters.

Figure 3.  Vertical shift of data from reheating accounts for a non-zero ∆Cp. DSC data (black) for the first peak 
of denaturation of DhaA: first runs (solid line), reheated runs for terminal temperatures 51, 54, 61 and 69 °C 
(dashed line). The reheating data gradually increases with increasing final temperature, indicating that the total 
∆Cp for the first peak is around 7 kJ mol−1 K−1, which is further supported by the fitting (see Table 2).
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We calculated residuals from global fitting and separated them into two groups: those based on data from the 
first run and those based on reheating data. Next, average distances and standard deviations were calculated for 
the respective groups. We assumed that if the average distances and standard deviations were of the same magni-
tude, the data did not suggest that there was an alternative conformation upon refolding. We selected a practical 
threshold of 5% in the signal units based on the precision of the concentration measurements. Thus, if the thresh-
old is not surpassed, the conformation of the refolded protein resembles that of the native state. Moreover, due 
to the smaller magnitude of the signal, the calculated distance and standard deviation of the reheating run might 
be lower than those of the first run. Hence, we considered the extreme case where after fitting, the calculated 
average distance and standard deviation of the reheating case were significantly higher, indicating that the model 
predicted reheating significantly less precisely than the first run. We tested the methodology on a simulated case 
that produced datasets similar to the denaturation of lipase from Thermomyces lanuginosa38. In those experi-
ments, reheating from a temperature immediately after the main transition (80 °C) did not result in any signal 
during reheating, whereas reheating from 100 °C showed a signal of almost 50% of that during the first run. We 
simulated the first scan as a one-step irreversible model (Ea = 300 kJ mol−1, Tf = 360 K, ∆H = 800 kJ mol−1) with 

Protein Model* 1st step 2nd step

Lysozyme wild type Partially reversible three-
state equilibrium (C)

Tm = 345.03 ± 0.05 K  
∆H = 516 ± 3 kJ mol−1  
∆Cp = 7.5 ± 0.7 kJ mol−1K−1**

E = 18 ± 1 kJ mol−1  
Tf = 3.2 ± 1.4 kK  
∆H = −37 ± 10 kJ mol−1

SpA mutant Reversible two-state (A)‡‡

Tm = 328.44 ± 0.07 K  
∆H = 102.4 ± 0.7 kJ mol−1  
∆Hvh = 169 ± 1 kJ mol−1  
∆Cp = 1.38 ± 0.04 kJ mol−1K−1

N/A

DbjA wild type Irreversible two-state (B)
E = 418 ± 3 kJ mol−1  
Tf = 337.6 ± 0.1 K  
∆H = 337 ± 3 kJ mol−1  
∆Cp = 5.4 ± 0.1 kJ mol−1K−1

N/A

LinB wild type Irreversible two-state (B)
E = 294 ± 3 kJ mol−1  
Tf = 338.6 ± 0.2 K  
∆H = 397 ± 5 kJ mol−1  
∆Cp = 8.0 ± 0.1 kJ mol−1K−1

N/A

DhaA wild type Partially reversible three-
state equilibrium (C)

Tm = 323.8 ± 0.1 K  
∆H = 338 ± 2 kJ mol−1

E = 75 ± 13 kJ mol−1  
Tf = 436 ± 27 K  
∆H = 70 ± 19 kJ mol−1*** 
∆Cp = 10.2 ± 0.5 kJ mol−1K−1**

DhaA115 mutant General three-state (D)

E1 = 436.5 ± 0.1 kJ mol−1  
Tf1 = 358.0 ± 0.01 K  
E−1 = 46.7 ± 0.1 kJ mol−1  
Tf − 1 = 689.4 ± 0.1 K  
∆H = 596 ± 5 kJ mol−1

E = 109.1 ± 0.1 kJ mol−1  
Tf = 431.6 ± 0.1 K 
∆H = −160 ± 40 kJ mol−1‡ 
∆Cp = 6.1 ± 0.4 kJ mol−1K−1**

Table 2.  Results of the global fitting of DSC thermograms for various proteins. *The model is defined for 
the main peak; **∆Cp is given as a combined value for two steps; N/A – not applicable. The values are given 
with 95% confidence intervals from the fitting; ‡∆H values calculated at the apparent peak temperature and, 
therefore, resembling the area under the peak; the values used for modelling of ∆H(T), i.e. values of ∆H(Tf), 
were 1126 ± 301 and −566 ± 40 kJ mol−1 for DhaA wild type and 115, respectively; ‡‡The reversible model was 
augmented by the van’t Hoff enthalpy.

Figure 4.  Simulated DSC data suggesting an alternative refolding conformation: (A) the first dataset at a 
terminal temperature of 80 °C (reheating represented by dashed line) showing no signal during reheating, 
whereas (B) the second dataset at a terminal temperature of 100 °C shows a reheating peak with area of 50%.
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added normally distributed noise, and the second scan followed the same model but with a reduced ∆H and from 
an alternative native state (Fig. 4). If the second peak had an area of 50% of the first peak, the calculated standard 
deviation of the residuals for the second run was 4-times higher than that of the first run and the value of noise 
used in the simulations. Even when the area under the peak for reheating was lowered to as little as 10% of the first 
run, the calculated standard deviation of the residuals from the second run was still 2-times higher, which should 
raise concerns. Hence, the alternative refolding defined by the authors of the article cited above may also arise as 
a result of fitting using the methodology proposed in this article.

To demonstrate the difference in analysis of the datasets with possible alternative refolding and ones with 
no signs of alternative refolding, we compared the residuals and calculated statistics of the simulated datasets 
described above with fitted calorimetry data for DbjA, whose DSC thermogram was found to be in perfect agree-
ment with a one-step irreversible model (Fig. 5). The residuals of the simulated case (Fig. 5A) showed significant 
bias of the reheating as well as substantial deviation of its residuals from the average. The residuals from the first 
run had a calculated standard deviation of 2.1 kJ mol−1 K−1, whereas residuals for the reheating run exhibited a 
calculated standard deviation of 8.8 kJ mol−1 K−1. In the case of DbjA, the residuals from the first and reheating 
runs were in good agreement in terms of their means and standard deviations, the latter being 0.85 kJ mol−1 
K−1and 0.61 kJ mol−1 K−1 for the first and second runs, respectively (Fig. 5B).

Selection of optimal points for reheating.  Next, we decided to tackle the sensitivity of modelling and 
analysis of data from DSC experiments with reheating with respect to the choice of terminal temperatures for 
the first run. If the assumed model is correct for heating, it should also be valid for cooling and reheating subject 
to the selection of different end points for the first run. First, one should verify reversibility of each peak. The 
only reliable way to do this is by reheating from a point at the foot of the peak immediately after the end of the 
transition. If reheating produces the same peak as the one in the first run, model A and the classical analysis of 
reversible denaturation should be considered (Fig. 6).

If irreversible denaturation is observed, one more point is required, as in model B, C, and D. In these cases, 
reheating from the end point of the peak usually results in no peak during reheating. Since in the irreversible case, 
we are interested in measuring the speed of the peak reduction, at least one more point for reheating should be 
added. We studied the dependence of reheating runs on the final temperature of the first run of DhaA wild type 
denaturation. Reheating showed that the protein unfolds in a partially reversible manner. Fitting revealed that the 
thermal unfolding was in relatively good agreement with a two intermediate model, i.e. model C plus one negative 
peak at high temperatures (Fig. 7). Since the protein exhibited a rather complex unfolding pathway, we limited 
our analysis to the first peak of the DSC thermogram.

For a better understanding of the sensitivity of the reheated run to the experimental setup, we investigated 
different terminal points for the first run. As can be seen from the graph in Fig. 8, the reheating data was far more 
sensitive to the final temperature immediately after the peak temperature (points III – V) than before; the lack of 
a significant portion of irreversibly denatured protein and almost complete refolding during cooling for the tem-
perature range before the peak (points I – II) drastically reduced the new information obtainable from reheating. 
Thus, only the final temperatures on the downward slope of the DSC curve were used for further analysis.

To allow discrimination between models B and C, an additional point for the reheating run at the summit of 
the peak (point III) seems to suffice. Indeed, as demonstrated earlier, model A exhibits almost no change in the 
height of the peak during reheating (Fig. 6). In contrast, model B results in a dramatic reduction of the native state 
after reheating, as can be seen in the examples of other haloalkane dehalogenases DbjA (Fig. 9) and LinB (Fig. 10). 
The DSC thermograms of these proteins were almost perfectly fitted by model B, although we also captured a 

Figure 5.  Analysis of alternative refolding for the simulated case versus DbjA. (A) Histograms of residuals from 
the first run (black) and reheating (white) of the simulated dataset. (B) DbjA with clear one-step irreversible 
unfolding: the residuals from the first run (black) and reheating run (white) are in good agreement regarding 
their means and standard deviations.
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second exothermic peak at temperatures around 90 °C for LinB, which may be indicative of aggregation39. The 
proportion of the native state after cooling from the peak temperature in these two cases was as little as 20%. 
When intermediate levels of the native state are observed during reheating (20–99%), model C can be applied. It 
exhibits a slight decrease of the peak in the reheated run, as shown in the example above (Fig. 8B), where about 
80% of the protein was conserved in the native state after reheating from 50 °C.

However, it should be noted that the abovementioned two points needed for reheating fail to discriminate 
between models B or C and D. Therefore, an additional point is needed. Based on the native fraction analysis 
(Fig. 8), the most sensitive point appears to be halfway between the peak temperature and end temperature of 
the respective peak (Fig. 8, point IV). In this case, model D should be applied if the decay between point III and 
point IV is different from that predicted by model B or C. This is obvious from comparison of the results for the 
DhaA115 mutant in Fig. 2 with those for DbjA and LinB in Figs 9 and 10, respectively. Considering these two 
points also improves estimation of the effect of ∆Cp described above.

In summary, we suggest the following experimental procedure to discriminate between the four basic models: 
(i) obtain the whole thermogram for as high temperature as possible with reheating; (ii) determine the tempera-
ture at the foot of the peak after the respective transition for each peak (point V in Fig. 8); (iii) conduct one more 
experiment with cooling and reheating from this temperature to check reversibility (discriminates between model 
A and models B/C/D); (iv) if reversibility is only partial, determine the peak temperature (point III in Fig. 8) and 

Figure 6.  Reversible unfolding of the mutant SpA. (A) DSC data (black) for the denaturation of SpA 
(L20A + Y15W): first runs (circles), reheated runs (crosses), fitted curves for the first run (blue) for model A 
(with van’t Hoff enthalpy). (B) Respective modelled fractions of states for a given temperature: native folded 
(black) and denatured (red) states. The scan rate was 4 °C min−1.

Figure 7.  The complex three-step modelling of thermal unfolding of wild type DhaA. (A) DSC data (black) for 
the denaturation of DhaA wild type: first runs (circles), reheated runs for terminal temperatures 49, 51, 54, 61, 
and 69 °C (not shown), fitted curves for the first run (blue) with decomposition by peaks (dotted) from model C 
plus one negative peak at high temperatures. (B) Respective modelled fractions of states for a given temperature: 
native folded (black), first intermediate (yellow), second intermediate (brown) and denatured (red) states. The 
scan rate was 1 °C min−1.
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the temperature half-way between the summit of the peak and the base after the transition (point IV in Fig. 8) – 
perform cooling and reheating for these temperatures (discriminates between models B, C, and D).

Case study: lysozyme.  Models B and D have been presented with regard to the data in Figs 1, 9 and 10. 
This subsection presents the results of modelling and fitting DSC thermograms from reheated runs for the 
widely-researched chicken egg lysozyme, for which model C was chosen. Although early studies suggested that 
its unfolding is fully reversible40, later research showed that there might be aggregation taking place in the imme-
diate vicinity of the melting temperature41. Our calorimetry experiment revealed a single peak with a substantial 
degree of irreversibility (Fig. 11). Model C provided a reasonably good fit to the data with the addition of one 
more negative peak at temperatures higher than the first peak. As can be seen from the graph, the actual data 
indicated a slightly lower fraction of the native state in the first round of reheating and a higher fraction in the 
second and third rounds of reheating than those predicted by the model. This may serve as additional evidence of 
the aggregation involving both the native and partially unfolded types described in earlier studies41, which would 
result in a greater amount of the native state for high temperatures than the amount predicted by model C.

However, almost the whole apparent peak could be attributed to the reversible transition by the fitting. Hence, 
the second step was mainly characterized by a rate constant of 0.27–0.32 s−1 for the temperature range 50–90 °C 
without well-defined decomposition into the energy of activation, transition temperature and enthalpy, as high-
lighted by the significant errors of estimation. Table 2 summarizes all the data obtained from fitting the cases 
presented in this paper.

Figure 8.  Fraction of the native state during reheating as a function of end temperature of the first run. (A) 
DSC data for the denaturation of DhaA wild type with terminal points for reheated runs (circles); (B) heights of 
reheating peaks as a fraction of those in the first run for different terminal temperatures. The steepest slope was 
observed after the summit of the peak, indicating high sensitivity of the reheating data to these temperatures 
(grey area).

Figure 9.  One-step irreversible unfolding of DbjA. (A) DSC data (black) for the denaturation of DbjA: first 
runs (circles), reheated runs for terminal temperatures 53, 55, and 59 °C (crosses), fitted curves for the first 
run (blue) and reheated runs (pink) from model B. (B) Respective modelled fractions of states for a given 
temperature: native folded (black) and denatured (red) states, cooling for both states is showed by dotted lines. 
The scan rate was 1 °C min−1. Cooling from the peak temperature resulted in 20% of the protein in the native 
state.
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The values for the reversible component of denaturation of lysozyme (Tm = 345 K, ∆H = 516 kJ mol−1, 
∆Cp = 7.5 kJ mol−1K−1) are in good agreement with previously published results41–43 under similar conditions 
(Tm = 346–349 K, ∆H = 485–543 kJ mol−1, ∆Cp = 6.2–10.5 kJ mol−1K−1 ). The parameters of the irreversible step 
indicate that the transition rate was 3.5–4.2·10−3 s−1 for the transition temperature range 70–80 °C and its depend-
ence on temperature was not well constrained by the data, as apparent from the low value of E and high Tf. For 
Dbja and LinB, simple one-step irreversible transitions were observed. DhaA variants exhibited different behav-
iour: the datasets of the wild type were fitted with two intermediates, whereas data for the stabilized mutant 
were perfectly fitted to a one intermediate model. This implies that the first two steps of the wild type unfolding 
were shifted to higher temperatures, “fusing” to produce one apparent peak in the thermograms. This hypothesis 
was further supported by the fact that only the general three-step model (D) was able to explain the data of the 
mutant. Hence, the first step for the apparent peak could not be described by a simple equilibrium. Based on this 
DSC analysis, we concluded that DhaA unfolds according to a rather complex model. Thus, it might be expedi-
ent to augment the data analysis with other thermodynamic techniques prior to drawing conclusions about the 
unfolding model.

Figure 10.  One-step irreversible unfolding of LinB with one additional exothermal peak at high temperatures. 
(A) DSC data (black) for the denaturation of LinB: first runs (circles), reheated runs for terminal temperatures 
49, 52 and 54 °C (crosses), fitted curves for the first run (blue) and reheated runs (pink) from model B plus one 
negative peak at high temperatures. (B) Respective modelled fractions of states for a given temperature: native 
folded (black), intermediate (yellow) and denatured (red) states, cooling for all the states is showed by dotted 
lines. The scan rate was 1 °C min−1. Cooling from the peak temperature resulted in less than 20% of the protein 
in the native state.

Figure 11.  Three-step partially reversible denaturation of lysozyme. (A) DSC data (black) for the denaturation 
of lysozyme: first runs (circles), reheated runs for terminal temperatures 70, 72, 74 and 80 °C (crosses), fitted 
curves for the first run (blue) and reheated runs (pink). (B) Native folded (black), first intermediate (yellow), 
second intermediate (brown) and denatured (red) states; cooling for the native state is showed by dotted lines. 
The scan rate was 1 °C min−1.
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Conclusions
In most cases discussed in our manuscript, the main motivation for understanding the unfolding mechanism of 
proteins is their stability. This stability is determined by the temperature at which the native state of the protein is 
lost, and which can be different from the apparent peak temperature in the presence of intermediates. Moreover, 
in order to better engineer stable mutant proteins, the contributions of thermodynamic stability (defined mainly 
by ∆H, or the Gibbs free energy difference ∆G) and kinetic stability (defined mainly by energy of activation Ea, 
or the Gibbs free energy barrier ∆G‡) must be defined. The values obtained from the model selection and curve 
fitting might help quantify those contributions. In addition to that, revealing intermediates on the unfolding path-
ways might be important for protein function, e.g. to penetrate through cell membranes, or for the determination 
of protein propensity to aggregate, which is important for industrial production of soluble proteins as well as for 
neurodegenerative diseases. The method suggested in this paper is to include second runs of DSC into the data 
modelling.

Reheating provides additional insights for selection of the model of unfolding in complement to experiments 
with different scan rates. In this paper, we proposed using the whole curves of reheated runs during fitting proce-
dures. Since first runs can easily be superimposed, reheating allows a feasible global fit with no need for additional 
parameters, in contrast to applying different scan rates. Moreover, the selected models are not affected by a chang-
ing k/v ratio, which might be the case when varying scan rates. Hence, fitting of reheated runs should provide 
more reliable estimations of parameters than obtainable by using different scan rates.

Collection of data for reheated runs should not cause many difficulties as cooling and reheating procedures 
are frequently included in the software distributed along with DSC devices. We have demonstrated that as few as 
three final temperature points are needed to produce enough data to discriminate between the four most com-
mon models of unfolding. It is worth noting that this approach is by no means limited to the models analyzed 
in this article as similar modelling of reheated runs can be derived for any mechanism of unfolding provided 
that complex unfolding is analyzed carefully. Reheating is capable of revealing more information about the ∆Cp 
effect because stopping the first run at different end points results in a different population of states at the onset of 
reheating, thus shifting initial points due to the accumulated ∆Cp. Finally, modelling of reheating can be used to 
quantify the resemblance between the first and second runs in terms of standard deviations of the residuals to rule 
out the possibility of alternative refolding. To help analyze data and perform a global fit to DSC data with reheat-
ing and different scan rates, we provide a computer code and link to the software tool used in the Supplement.

Data Availability.  CalFitter software, source code, and binaries were implemented in MATLAB and are 
freely available for download at http://loschmidt.chemi.muni.cz/peg/software/calfitter.

References
	 1.	 Koga, N. et al. Principles for designing ideal protein structures. Nature 491(7423), 222–227 (2012).
	 2.	 Baker, D. Protein folding, structure prediction and design. Biochemical Society Transactions 42(2), 225–229 (2014).
	 3.	 Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews Molecular Cell 

Biology 16(1), 18–29 (2015).
	 4.	 Wang, S. & Kaufman, R. J. The impact of the unfolded protein response on human disease. The Journal of Cell Biology 197(7), 

857–867 (2012).
	 5.	 Dill, K. A. & MacCallum, J. L. The protein-folding problem. 50 years on. Science 338(6110), 1042–1046 (2012).
	 6.	 Englander, S. W., Mayne, L., Kan, Z.-Y. & Hu, W. Protein folding—how and why: By hydrogen exchange, fragment separation, and 

mass spectrometry. Annual Review of Biophysics 45, 135–152 (2016).
	 7.	 Zhuravleva, A. & Korzhnev, D. M. Protein folding by NMR. Progress in Nuclear Magnetic Resonance Spectroscopy 100, 52–77 (2017).
	 8.	 Johnson, C. M. Differential scanning calorimetry as a tool for protein folding and stability. Archives of Biochemistry and Biophysics 

531, 100–109 (2013).
	 9.	 Privalov, P. L., Microcalorimetry of Macromolecules: The Physical Basis of Biological Structures (Wiley, Baltimore, 2012).
	10.	 Strucksberg, K. H., Rosenkranz, T. & Fitter, J. Reversible and irreversible unfolding of multi-domain proteins. Biochimica et 

Biophysica Acta Proteins and Proteomics 1774(12), 1591–1603 (2007).
	11.	 Ibarra-Molero, B., Naganathan, A. N. & Sanchez-Ruiz, J. M. Modern analysis of protein folding by differential scanning calorimetry. 

Methods in Enzymology 567, 277–314 (2016).
	12.	 Rao, V., Hemanth, G. & Shachi, G. Using the folding landscapes of proteins to understand protein function. Current Opinion in 

Structural Biology 36, 67–74 (2016).
	13.	 Sanchez-Ruiz, J. M. Protein kinetic stability. Biophysical Chemistry 148(1), 1–15 (2010).
	14.	 Becktel, W. J. & Schellman, J. A. Protein stability curves. Biopolymers 26(11), 1859–1877 (1987).
	15.	 Privalov, P. L. Cold denaturation of protein. Critical Reviews in Biochemistry and Molecular Biology 25(4), 281–306 (1990).
	16.	 Toledo-Núñez, C., Vera-Robles, L. I., Arroyo-Maya, I. J. & Hernández-Arana, A. Deconvolution of complex differential scanning 

calorimetry profiles for protein transitions under kinetic control. Analytical Biochemistry 509, 104–110 (2016).
	17.	 Freire, E., TheThermodynamic Linkage Between Protein Structure, Stability, and Function. Protein Structure, Stability, and Folding, 

37–68 (2001).
	18.	 Makhatadze, G. I. & Privalov, P. L. Energetics of protein structure. Advances in Protein Chemistry 5, 507–510 (1995).
	19.	 Roberts, C. J. Non‐native protein aggregation kinetics. Biotechnology and Bioengineering 98(5), 927–938 (2007).
	20.	 Privalov, P. L. & Dragan, A. I. Microcalorimetry of biological macromolecules. Biophysical Chemistry 126, 16–24 (2007).
	21.	 Lyubarev, A. E. & Kurganov, B. I. Modeling of Irreversible Thermal Protein Denaturation at Varying Temperature. II. The Complete 

Kinetic Model of Lumry and Eyring. Biochemistry Moscow 64, 832–838 (1999).
	22.	 Arroyo-Reyna, A., Tello-Solis, S. R. & Rojo-Dominguez, A. Stability parameters for one-step mechanism of irreversible protein 

denaturation: a method based on nonlinear regression of calorimetric peaks with nonzero delta Cp. Analytical Biochemistry 328, 
123–13 (2003).

	23.	 Lepock, J. R. et al. Influence of transition rates and scan rate on kinetic simulations of differential scanning calorimetry profiles of 
reversible and irreversible protein denaturation. Biochemistry 31, 12706–12712 (1992).

	24.	 Lyubarev, A. E. & Kurganov, B. I. Analysis of DSC data relating to proteins undergoing irreversible thermal denaturation. Journal of 
Thermal Analysis and Calorimetry 62, 49–60 (2000).

	25.	 Sedlák, E., Schaefer, J. V., Marek, J., Gimeson, P. & Plückthun, A. Advanced analyses of kinetic stabilities of iggs modified by 
mutations and glycosylation. Protein Science 24(7), 1100–1113 (2015).

http://loschmidt.chemi.muni.cz/peg/software/calfitter


www.nature.com/scientificreports/

1 4SCiEnTifiC REPOrtS | 7: 16321  | DOI:10.1038/s41598-017-16360-y

	26.	 Vermeer, A. W., Bremer, M. G. & Norde, W. Structural changes of IgG induced by heat treatment and by adsorption onto a 
hydrophobic Teflon surface studied by circular dichroism spectroscopy. Biochimica et Biophysica Acta - General Subjects 1425(1), 
1–12 (1998).

	27.	 Zhadan, G. G. et al. Protein involvement in thermally induced structural transitions of pig erythrocyte ghosts. International Journal 
of Biochemistry and Molecular Biology 42, 11–20 (1997).

	28.	 Singh, N., Liu, Z. & Fisher, H. F. The existence of a hexameric intermediate with molten-globule-like properties in the thermal 
denaturation of bovine-liver glutamate dehydrogenase. Biophysical Chemistry 63, 27–36 (1996).

	29.	 Markov, D. I., Zubov, E. O., Nikolaeva, O. P., Kurganov, B. I. & Levitsky, D. I. Thermal denaturation and aggregation of myosin 
subfragment 1 isoforms with different essential light chains. International Journal of Molecular Sciences 11(4194-4226), 4194–4226 
(2010).

	30.	 Andrews, J. M. & Roberts, C. J., A Lumry-Eyring nucleated polymerization model of protein aggregation kinetics: 1. Aggregation 
with pre-equilibrated unfolding. The Journal of Physical Chemistry B, 7897–7913 (2007).

	31.	 Privalov, P. L. & Khechinashvili, N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a 
calorimetric study. Journal of Molecular Biology 86(3), 665–684 (1974).

	32.	 Milardi, D., La Rosa, C. & Grasso, D. Extended theoretical analysis of irreversible protein thermal unfolding. Biophysical Chemistry 
52, 183–189 (1994).

	33.	 Pavlova, M. et al. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nature Chemical 
Biology 5, 727–733 (2009).

	34.	 Stepankova, V., Damborsky, J. & Chaloupkova, R. Organic co-solvents affect activity, stability and enantioselectivity of haloalkane 
dehalogenases. Biotechnology Journal 8, 719–729 (2013).

	35.	 Sato, S., Religa, T. L. & Fersht, A. R. Φ-Analysis of the folding of the B domain of protein a using multiple optical probes. Journal of 
Molecular Biology 360, 850–864 (2006).

	36.	 Sanchez-Ruiz, J. M. Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophysical Journal 61(4), 
921–935 (1992).

	37.	 Privalov, P. L. & Makhatadze, G. I. Contribution of hydration and non-covalent interactions to the heat capacity effect on protein 
unfolding. Journal of Molecular Biology 224(3), 715–723 (1992).

	38.	 Rodriguez‐Larrea, D., Ibarra‐Molero, B., de Maria, L., Borchert, T. V. & Sanchez‐Ruiz, J. M., Beyond Lumry–Eyring: An unexpected 
pattern of operational reversibility/irreversibility in protein denaturation. Proteins: Structure, Function, and Bioinformatics, 19–24 
(2008).

	39.	 Goyal, M., Chaudhuri, T. P. & Kuwajima, K. Irreversible Denaturation of Maltodextrin Glucosidase Studied by Differential Scanning 
Calorimetry, Circular Dichroism, and Turbidity Measurements. PLoS ONE 9, e115877 (2014).

	40.	 Branchu, S., Forbes, R. T., York, P. & Nyqvist, H. A central composite design to investigate the thermal stabilization of lysozyme. 
Pharmaceutical Research 16, 702–708 (1999).

	41.	 Sassi, P., Giugliarelli, A., Paolantoni, M., Morresi, A. & Onori, G. Unfolding and aggregation of lysozyme: A thermodynamic and 
kinetic study by FTIR spectroscopy. Biophysical Chemistry 158, 46–53 (2011).

	42.	 Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F. & Wilson, A. C. Ancestral lysozymes reconstructed, neutrality tested and 
thermostability linked to hydrocarbon packing. Nature 345(6270), 86–89 (1990).

	43.	 Shih, P., Kirsch, J. F. & Holland, D. R. Thermal stability determinants of chicken egg‐white lysozyme core mutants: Hydrophobicity, 
packing volume, and conserved buried water molecules. Protein Science 4(10), 2050–2062 (1995).

Acknowledgements
The work was supported by the Grant Agency of the Czech Republic (GA16–07965S) and the Czech Ministry 
of Education of the Czech Republic (LO1214, LQ1605, LM2015051 and LM2015055). This work was also 
supported by the Czech Ministry of Education, Youth and Sports, Programme CETOCOEN UPgrade 
(CZ.1.05/2.1.00/19.0382). K.B. was supported by the “Employment of Best Young Scientists for International 
Cooperation Empowerment” (CZ.1.07/2.3.00/30.0037) project co-financed by the European Social Fund and the 
state budget of the Czech Republic. A.K. is a Brno Ph.D. Talent Scholarship Holder and funded by the Brno City 
Municipality.

Author Contributions
A.K. and K.B. performed sample preparation and DSC experiments; S.M. performed data analysis and coded 
the software tool; J.D., Z.P., C.J., S.M., K.B., and A.K. designed research, interpreted data, and contributed to the 
writing of the paper.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-16360-y.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-16360-y
http://creativecommons.org/licenses/by/4.0/


W344–W349 Nucleic Acids Research, 2018, Vol. 46, Web Server issue Published online 14 May 2018
doi: 10.1093/nar/gky358

CalFitter: a web server for analysis of protein thermal
denaturation data
Stanislav Mazurenko1,†, Jan Stourac1,2,†, Antonin Kunka1,2,†, Sava Nedeljković1,3,
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ABSTRACT

Despite significant advances in the understanding
of protein structure-function relationships, reveal-
ing protein folding pathways still poses a challenge
due to a limited number of relevant experimental
tools. Widely-used experimental techniques, such as
calorimetry or spectroscopy, critically depend on a
proper data analysis. Currently, there are only sepa-
rate data analysis tools available for each type of ex-
periment with a limited model selection. To address
this problem, we have developed the CalFitter web
server to be a unified platform for comprehensive
data fitting and analysis of protein thermal denatura-
tion data. The server allows simultaneous global data
fitting using any combination of input data types and
offers 12 protein unfolding pathway models for se-
lection, including irreversible transitions often miss-
ing from other tools. The data fitting produces opti-
mal parameter values, their confidence intervals, and
statistical information to define unfolding pathways.
The server provides an interactive and easy-to-use
interface that allows users to directly analyse input
datasets and simulate modelled output based on the
model parameters. CalFitter web server is available
free at https://loschmidt.chemi.muni.cz/calfitter/.

INTRODUCTION

Proteins are the main building blocks of living organisms
and are widely used in numerous biomedical and biotech-
nological applications. Since they are made up of only
20 amino acids, the enormous variety of their functions
mainly stems from their unique structures. The interest in

protein spatial organization is usually twofold: the exact po-
sition of active sites and connected residues can shed light
on protein function such as enzymatic activity, intracellular
transport or molecular signalling (1,2), and exact knowl-
edge of structural elements provides methods of locating the
possible sources of protein (in)stability and designing more
stable variants using protein engineering (3,4). Moreover,
protein misfolding and aggregation have also been reported
as primary causes of several neurodegenerative diseases (5).

Streamlined protein denaturation experimental tech-
niques to study protein (un)folding, misfolding, and ag-
gregation include differential scanning calorimetry (DSC),
fluorescence/absorbance spectroscopy, light scattering, and
circular dichroism (CD) (6–10). They allow the recording of
corresponding signals when a protein undergoes denatura-
tion, e.g. due to an increase in temperature. Since those tech-
niques produce an aggregated output from a highly complex
underlying process of unfolding, they necessitate the devel-
opment of software for data modelling and analysis (11,12).
Such analysis usually involves the selection of an appropri-
ate unfolding model that best fits the observed data and al-
lows quantification of unfolding pathways in terms of the
number of intermediate states, Gibbs free energy barriers
separating those states, and corresponding melting temper-
atures (7,13,14). The importance of such information can
hardly be overestimated: intermediates are often the culprits
of aggregation, and energy barriers directly define protein
half-lives. Hence, both provide attractive targets for protein
engineering (15). Moreover, as far as molecular dynamic
simulations are concerned, the number of unfolding inter-
mediates can be used as input to cluster analysis in Markov
state models, while experimental half-lives can provide guid-
ance for the necessary length of simulations and their con-
ditions (16,17).

Apart from general purpose but programming-intensive
tools for data analysis, such as Matlab, Origin or Igor Pro,
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there are only a few software packages that handle differ-
ent types of thermal denaturation experiments. These tools
were designed to study kinetics or chemical equilibrium ––
KinTek Explorer, DynaFit –– or are linked to a specific type
of measurement –– MicroCal DSC Origin and CDpal (18–
20). Although the former are based on equations that can be
adapted for unfolding, data and differential equations with
a gradual temperature change are not supported, and the
set of parameters offered requires additional manipulations
for translation into those usually used to describe unfolding,
e.g. Gibbs free energy differences and enthalpy changes. The
latter tools offer a limited set of models for fitting, e.g. only
reversible denaturation despite increasing cases of proteins
unfolding irreversibly. Moreover, such tools are unable to
fit global data from different sources, e.g. equilibrium and
kinetic data, which may sometimes lead to simplified con-
clusions.

There are several advantages of global fitting over anal-
yses of separate data sets. Fitting curves to multiple-step
models is error-prone because the signal measured can be
insensitive to some of the intermediates on the unfold-
ing pathway. Moreover, consecutive steps sometimes over-
lap significantly and produce apparent single transition
which cannot be resolved by fitting into just one data type,
and different types of experimental signals must be ana-
lyzed simultaneously to overcome this problem (21). Mod-
elling and data fitting of single experimental types indi-
vidually may also fail to separate parameters enforcing re-
parametrization of a model for available combinations of
constants, e.g. the equilibrium constant Keq instead of the
rate ratios kfwd/krev. Simultaneous fitting into a combina-
tion of different data types eventually leads to a single set
of the original parameter values without any need for re-
parametrization (22,23). Finally, many independent vari-
ables that have to be introduced in separate data fitting con-
tributes to increased uncertainty and can be avoided in the
global data fitting.

There is a need for a single, universal platform that han-
dles thermal denaturation data analysis with multiple test
models, a user-friendly interface, and the option to join dif-
ferent types of experimental data in one data fitting session.
We have developed the web server CalFitter for an interac-
tive data analysis of the commonly used thermal denatura-
tion techniques, such as DSC, CD, and kinetic temperature-
jump (T-jump) experiments. This first-of-a-kind web server
offers flexible visualization of the data, quick data pre-
treatment for removal of irrelevant and poor-quality data,
data simulation, and fitting based on a wide range of fully
reversible, irreversible, and partially-reversible unfolding
models, as well as statistical data analysis of the goodness of
fit. Its data fitting functionality was validated using denat-
uration data for six wild-type proteins from different struc-
tural families, and seven mutant proteins.

WORKFLOW

The basic workflow of CalFitter is outlined in Figure 1.
There are three main phases in the process. First, the user
uploads experimental datasets, plots them, and treats the
data using built-in data pre-treatment options. Then the
user selects a model for the data fitting, supplies initial pa-

rameter estimates, simulates the modelled dynamics, and
starts the fitting process. The server performes numerical
data fitting by minimizing the normalized sums of squared
residuals. Once the data fitting is complete, the server re-
turns optimal parameter values, confidence intervals cal-
culated from asymptotic normal distribution, and statisti-
cal information about the goodness of fit. This information
can be further used to estimate the outcome of the fitting
and help identify the necessary adjustments to the selected
model required for refitting. Different fitting sessions can
be conducted in independent tabs after data uploading to
compare the outcomes merely by switching the tabs. Once
the fitting is complete, the results of the analysis can be ex-
ported to a single excel file for further use. Moreover, each
session is given a unique ID and thus can be repeatedly ac-
cessed at the server.

Step 1: Data upload and pre-treatment

The input to the server consists of experimental datasets of
three types: (i) temperature-dependent heat capacity data
from DSC, (ii) temperature-dependent spectroscopic sig-
nals (ellipticity, fluorescence, or absorbance) from spectro-
scopic scanning measurements, and (iii) time-dependent
spectroscopic signals from folding/unfolding T-jumps. In
the first step, the user interactively uploads datasets ob-
tained from experiments and specifies the corresponding
data columns, units, and experimental setup parameters
such as scan rates for DSC and spectroscopy measurements
or temperatures for T-jumps. In order to eliminate system-
atic errors during global fitting, all datasets must be col-
lected under the same experimental conditions, e.g. pH,
ionic strength, and buffer composition. The concentration
dependence of protein unfolding must be verified to avoid
aggregation or other association/dissociation effects.

The data files can be uploaded in either CalFitter native
format (24), plain comma-separated values format (CSV),
or several formats exported directly from the build-in soft-
ware that comes with instruments, e.g. Chirascan or Bio-
Kine. The user can select the units from the most widely
used ones for temperature (◦C or K), heat capacity differ-
ence (J, kJ, cal or kcal/mol K), and time (ns, �s, ms, s, min,
h). There is no upper limit on the number of points in the
datasets, although larger datasets take longer to calculate
and can bias the fitting statistically. The web server provides
a detailed Help page with guidelines about data formatting
and uploading.

The user can then plot the uploaded datasets and select
those that will be used for data analysis. Any combination
of the dataset types can be used for global fitting. More-
over, the user can exclude some parts of the datasets such
as temperature ranges with a poor experimental signal. Fi-
nally, visual data normalisation can be carried out at this
step, which is of great importance in global fits, because
collected experimental values usually have different units.
In particular, DSC data for each scan rate can be superim-
posed using vertical shifts, spectroscopy data can be nor-
malized by subtracting signal means and dividing by signal
standard deviations for each dataset, and T-jump traces can
be shifted vertically to the same starting point. This has only
a visual effect since all the datasets are normalized automat-
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Figure 1. CalFitter workflow. The software provides an integrated analysis of data using three different types of experimental techniques: (I) calorimetry,
(II) spectroscopy and (III) T-jumps. The procedure consists of three steps: (1) data upload and pre-treatment, (2) data fitting and (3) data analysis. A
detailed description of the individual steps is provided in the text.

ically during the fitting as described in the section Global
fitting of the Supplementary Data.

Step 2: Data fitting

Once the user is satisfied with the datasets selected and their
quality, data fitting can be carried out. The procedure is sim-
ilar to existing fitting software such as Origin or KinTek Ex-
plorer with a special focus on the determination of thermo-
dynamic and kinetic parameters. First, a potential model is
selected based on the desired number of steps on the unfold-
ing pathway and their reversibility (Table 1). CalFitter cur-
rently offers models that are based on discreet macrostates
on the unfolding pathways, i.e. native, intermediate, dena-
tured, etc. Analysis based on the statistical free energy sur-
face models of microstates (25) is beyond the scope of the
web server. Second, initial parameter estimates are specified
(Figure 1). The server produces initial values, however, the
user needs to check and modify those values as there are
currently no algorithms providing reliable initial parameter
estimation for thermal denaturation models. The web server
provides the option to simulate the output datasets based on
the input initial parameters to assist the user at this stage.
This allows the display of modelled and input data together
on one graph. Finally, the user specifies whether some pa-
rameters should remain fixed during the fitting with an ad-

justable number of iterations. More details on mathematical
modelling and data fitting can be found in the Supplemen-
tary Data and the relevant literature (11,12,24,26–28).

Step 3: Analysis of the results

Once the fitting is complete, the web server updates the pa-
rameter values, their confidence intervals and provides sta-
tistical information from the fitting such as Akaike (AIC)
and Bayesian (BIC) information criteria and residual plots.
At this point, the user can either accept the model or change
it and carry out refitting. The most common strategy is to
start from the simple model with a few steps and then add
additional steps while checking the goodness of fit visu-
ally or using the AIC and BIC values (29). The common
sign of over-parameterization is drifting parameter values
and large confidence intervals. In this case, either the model
should be simplified by removing some steps, or some fitting
parameters should be held constant. Finally, the user can
also check the sensitivity of the output to input parameters
or undo the last fit before exporting the results in standard
formats.

The output consists of the unfolding pathway, the up-
dated parameter values that best describe the data included,
their confidence intervals, and other statistical information
from the fitting such as goodness of fit. There are four data
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Table 1. The description of the models and the corresponding parameters implemented in CalFitter

Model Description Model parametersa Data sets

1 step
N −> D A fully irreversible transition Tf, Ea, �H‡, �Cp All
N = D A fully reversible transition with equilibrium Tm, �H, �Cp Calorimetry & spectroscopy
N = D (Van’t Hoff’s) A fully reversible transition with equilibrium and van’t

Hoff’s enthalpy
Tm, �H, �Hvh, �Cp Calorimetry & spectroscopy

N < = > D A general transition with forward and reverse components Tfwd, Efwd, Trev, Erev, �Cp All
2 steps
N −> I −> D A fully irreversible transition Step 1: Tf, Ea, �H‡, �Cp

Step 2: Tf, Ea, �H‡, �Cp All
N = I −> D A transition with a reversible step in equilibrium and an

irreversible step
Step 1: Tm, �H, �Cp

Step 2: Tf, Ea, �H‡, �Cp

Calorimetry & spectroscopy

N < = > I −> D A general Lumry-Eyring model Step 1: Tfwd, Efwd, Trev, Erev, �Cp

Step 2: Tf, Ea, �H‡, �Cp

All

N = I = D A fully reversible transition Step 1: Tm, �H, �Cp
Step 2: Tm, �H, �Cp

Calorimetry & spectroscopy

3 steps
N −> I1 −> I2 −> D A fully irreversible transition Step 1: Tf, Ea, �H‡, �Cp All

Step 2: Tf, Ea, �H‡, �Cp
Step 3: Tf, Ea, �H‡, �Cp

N = I1 −> I2 −> D A transition with the reversible first step in equilibrium Step 1: Tm, �H, �Cp Calorimetry & spectroscopy
and the irreversible second and third steps Step 2: Tf, Ea, �H‡, �Cp

Step 3: Tf, Ea, �H‡, �Cp
N < = > I1 −> I2 −> DA general Lumry-Eyring model with two intermediates Step 1: Tfwd, Efwd, Trev, Erev, �Cp All

Step 2: Tf, Ea, �H‡, �Cp
Step 3: Tf, Ea, �H‡, �Cp

N = I1 = I2 −> D A transition with two reversible steps in equilibrium Step 1: Tm, �H, �Cp Calorimetry & spectroscopy
and an irreversible step Step 2: Tm, �H, �Cp

Step 3: Tf, Ea, �H‡, �Cp
4 steps
N −> I1 −> D A two-branch irreversible unfolding pathway Step 1: Tf, Ea, �H‡, �Cp All
N −> I2 −> D Step 2: Tf, Ea, �H‡, �Cp

Step 3: Tf, Ea, �H‡, �Cp
Step 4: Tf, Ea, �H‡, �Cp

aTm – the melting temperature, Tf – the reference temperature of an irreversible step at which the corresponding rate is 1 (fwd. – forward rates; rev. –
reverse rates), �H – the enthalpy change (at Tm if �Cp is nonzero; vh – van’t Hoff’s); �H‡– the activation enthalpy change (at Tf or Tm for irreversible
and general steps, respectively, if �Cp is nonzero); Ea – the activation energy; �Cp – the heat capacity change. Since T-jumps are based on the relaxation
kinetics, they cannot be simulated by the models with reversible steps assumed in equilibrium.

types available for visualising the output (Figure 2). The first
type is raw experimental and pre-treated data, each dataset
being separate or combined with other datasets of the same
type. The second type uses modelled signals matching the
selected datasets given the current parameter values. A state
decomposition may be carried out with this type whereby
signal contributions from each step of the unfolding path-
way to the overall modelled signal are shown. The third
type uses the modelled protein state fractions as functions of
temperature or time. Finally, the fourth type uses residuals
from the fit, which might shed further light on the quality
of the fit and main discrepancies between the modelled and
experimental data. The user can then export the graphs and
the corresponding datasets as an archive with figures and
settings files or as an Excel file.

EXPERIMENTAL VALIDATION

The CalFitter performance was thoroughly validated with
all the three data types. DSC data analysis was tested on
previously published datasets: the thermograms of wild-
type hen egg lysozyme, wild-type haloalkane dehalogenases
LinB, DbjA, DhaA, fibroblast growth factor FGF2 and
variants of DhaA and FGF2 engineered for higher ther-

mostability (24,30). Calorimetry curves were curve-fitted
and compared with the output from MicroCal DSC Ori-
gin and the standalone Matlab-based CalFitter 1 (24). Spec-
troscopy data analysis was tested on four variants of DhaA
and compared with the output from CD-pal. Finally, T-
jump data analysis was validated using four different global
datasets consisting of several traces of DhaA wild-type and
compared against the values obtained using KinTek Ex-
plorer. In all the cases, the output values produced by the
CalFitter web differed from the previously published by
<0.1% on average for temperature related parameters, and
by <6.8% on average for energy and heat-related param-
eters (Table 2). Maximal discrepancies for the latter were
mainly due to smaller parameter values and/or wide confi-
dence intervals. Moreover, in those cases, the CalFitter web
simulation with the parameters from the other tools pro-
duced visually the same quality of the fit suggesting that the
differences stem from the numerical procedures used for fit-
ting rather than from a different model behaviour.

The global fitting provided by the web server was also
used to analyse experimental data for stable variants of
FGF2 protein designed recently using computer-assisted
protein engineering (30). This analysis revealed new bio-
physical insights, namely the presence of an unfolding inter-
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Figure 2. An example of the graphical output. Initial datasets with modelled signal in blue are depicted as icons on the right-hand side and can be zoomed-
in and displayed on the left-hand side. The zoomed-in version also depicts the residuals at the top so that a user can estimate the quality of the fit and
the presence of any systematic errors or unexplained data variation. In the presented case, waves are apparent in the residual plot that are indicative of an
approximately 5% misfit at high temperatures. When the option ‘Decompose states’ is selected, the contribution of each step to the overall signal is plotted
in dotted lines. Apart from the plots of data and corresponding modelled signals, modelled fractions of states are presented in one of the graphs.

Table 2. Experimental validation of CalFitter web server. Discrepancies are given in terms of absolute % difference for parameters obtained for energies
and temperatures

Temperature variables (Tm, Tf) Energy variables (Ea, �H, �Hvh)

Data type
Software used for
comparison

Number of
datasets

Average
discrepancy

Maximal
discrepancy

Average
discrepancy

Maximal
discrepancy

DSCa MicroCal DSC
Origin

67 0.06% 0.42% 3.03% 15.06%

Matlab-based
CalFitter 1

0.00% 0.01% 0.00% 0.07%

CDb CD-pal 44 0.01% 0.10% 0.05% 1.18%
T-jumpsc KinTek Explorer 35 0.09% 0.21% 6.74% 10.87%

abased on �H, �Hvh, and Tm from a non-two state model with �Hvh.
bbased on Tm and �H for a one-step fully reversible model.
cdata from global fitting based on Ea and Ta for a two-step fully irreversible model.

mediate, and demonstrated a good agreement between the
in silico predicted Gibbs free energy differences and the dif-
ferences in the transition barriers for the first unfolding step
estimated from experiments. Another case study of thermal
denaturation of haloalkane dehalogenase DhaA112 engi-
neered for stability is described in the Supplementary Data.
This new case reveals an unfolding intermediate and pro-
vides quantitative estimates of unfolding rates.

CONCLUSIONS AND OUTLOOK

CalFitter is a web server that offers users a one-stop-shop
for data analysis from commonly used temperature denat-
uration experiments. Not only does it offer a wider range
of models for each separate data type when compared to
most of the existing analogues, but it also enables the com-
bination of different dataset types, such as equilibrium and
T-jump data, in a single global data analysis. This feature
has never been implemented for thermal unfolding stud-

ies before, to the best of the authors’ knowledge. The fit-
ting procedures used were optimised and validated using
several dozen datasets from different sources, including re-
cently published data as well as cross-validation using the
existing software for each data type analysis.

The server is complemented by an easy-to-use graphical
interface that allows users to interactively pre-treat the data
by excluding irrelevant parts or artefacts, selecting the de-
sired subset for analysis and fitting, and simulating the be-
haviour of the models when parameters change. The hidden
mathematical calculations and fitting makes the process of
data analysis accessible to users without any prior expertise
of mathematical modelling. The web server graphical out-
put consists of four different plot types to provide the user
with a full image of the modelled pathway and its corre-
spondence to the supplied data.

In the future, we will implement an ‘advanced mode’
with a model editor that the users can manually input any
model of their choice using a simple text entry with an in-
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tuitive syntax similar to KinTek Explorer or DynaFit. We
are also working on a module for rapid initial parameter es-
timations. This module will estimate starting values based
on the shape of the curves, rendering the web server even
more user-friendly for researchers with limited experience in
modelling data from thermal unfolding studies. Finally, we
plan to add additional modelling capabilities to the existing
modules, e.g., double T-jumps and singular value decompo-
sition of CD spectra, as well as to develop modules for anal-
ysis of other types of experimental data, e.g., protein chem-
ical denaturation and hydrogen-deuterium exchange mass
spectrometry.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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ABSTRACT

The majority of naturally occurring proteins have
evolved to function under mild conditions inside
the living organisms. One of the critical obstacles
for the use of proteins in biotechnological applica-
tions is their insufficient stability at elevated temper-
atures or in the presence of salts. Since experimental
screening for stabilizing mutations is typically labo-
rious and expensive, in silico predictors are often
used for narrowing down the mutational landscape.
The recent advances in machine learning and arti-
ficial intelligence further facilitate the development
of such computational tools. However, the accuracy
of these predictors strongly depends on the quality
and amount of data used for training and testing,
which have often been reported as the current bot-
tleneck of the approach. To address this problem,
we present a novel database of experimental ther-
mostability data for single-point mutants FireProtDB.
The database combines the published datasets, data
extracted manually from the recent literature, and
the data collected in our laboratory. Its user inter-
face is designed to facilitate both types of the ex-
pected use: (i) the interactive explorations of indi-
vidual entries on the level of a protein or mutation
and (ii) the construction of highly customized and
machine learning-friendly datasets using advanced
searching and filtering. The database is freely avail-
able at https://loschmidt.chemi.muni.cz/fireprotdb.

INTRODUCTION

Proteins play essential roles in many biotechnological and
biomedical applications, where they are often subjected to
extreme environments, e.g. elevated temperatures or the
presence of various salts. However, naturally occurring pro-
teins have mostly evolved to function in the mild environ-
mental conditions, and therefore their applicability is lim-
ited in the industrial applications. For this reason, protein
engineers generally aim to improve protein stability, and
thermostability is one of their primary targets (1) as it is cor-
related with serum survival time (2), half-life (3), expression
yield (4) and activity in the presence of denaturants (5). A
reliable assessment of the effect of a mutation on protein sta-
bility is often performed experimentally. Extensive experi-
mental screening, however, is slow and costly, prompting the
use of in silico approaches for the pre-selection of promis-
ing mutations. These methods are usually based on one of
the three principles: (i) free energy calculations, (ii) phylo-
genetics or (iii) machine learning. With the recent advances
in artificial intelligence, tool developers increasingly resort
to the third group of methods. However, the accuracy of the
machine learning-based predictors is still severely limited by
the lack of high-quality data (6). Experimental characteri-
zations are usually not capable of producing large amounts
of data, and the majority of these measurements are scat-
tered in the scientific literature. Thus, there is a strong de-
mand for systematic collection, validation, and organiza-
tion of such data in a database.

Two attempts have been made to establish a systematic
and extensive collection of thermostability data so far. The
first and largest database is the Thermodynamic Database
for Proteins and Mutants–ProTherm (7). It was first re-
leased in 1999 with the aim to collect experimentally de-
termined thermodynamic parameters for wild-type proteins
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and their mutants from the published literature. Its latest
version contains >25 000 entries from 740 proteins, and it
serves as the primary source of protein stability data for the
development of new predictors. However, ProTherm was
last updated in 2013 so the database is already out-of-date.
Moreover, several critical issues have been reported, such
as inaccurate annotations or wrong signs of values (6,8–
10). This makes ProTherm even more difficult to use as
time-demanding manual filtering and validation steps are
required to confirm the values in the original articles. This
manual filtering led to the construction of many different,
often overlapping, subsets with corrected values and occa-
sionally new data. Some of these derivative datasets were
deposited to the VariBench database (11) without any at-
tempts to reintegrate the changes into ProTherm or create
an improved database. This changed in 2018 when Prota-
Bank (12) was released. This database aims to collect a wide
range of protein engineering data such as thermostability,
activity, expression, binding and several others. The devel-
opers imported all the data from ProTherm, yet they did not
seem to perform any manual curation. Therefore, the criti-
cal issues listed above were not resolved. And while Prota-
Bank enriched the ProTherm data with recent experimental
studies, the database does not offer any advanced search-
ing and filtering capabilities, at least in its non-commercial
version. This makes the data extraction and processing te-
dious by necessitating many manual steps and hindering
the application of such data-driven methods as machine
learning.

To overcome these limitations, we established the
FireProtDB database that holds manually curated ther-
mostability data for single-point mutants. The database
contains the data available in ProTherm, ProtaBank, and
our extensive manual literature search. Its user-friendly in-
terface allows easy and interactive browsing through the ex-
perimental data and provides links to the corresponding
UniProt and PDB entries. Moreover, advanced searching
and filtering capabilities, the ability to download the data in
a simple table format, and meticulous labelling of data en-
tries used for training and testing of published tools prompt
the further application of machine learning.

MATERIALS AND METHODS

Database architecture and data model

The top-level entity of the FireProtDB database is a unique
protein sequence entry with the assigned UniProt ID (13).
Protein sequences were preferred to structures due to the
broader availability of the former. Each sequence is a string
of amino acids in specified positions. Multiple mutations
can be assigned to a single position, and each mutation can
be evaluated by multiple measurements and derived val-
ues. The measurements represent the experimental values
of the Gibbs free energy changes upon mutation (��G) or
changes in melting temperatures (�Tm). The derived values
stand for averages or medians of multiple measurements for
a particular mutation. Each measurement is also accompa-
nied by a curation flag that indicates whether the value was
manually validated against the original publication to guar-
antee its correctness. Furthermore, each measurement and

derived value can be assigned to multiple published datasets
to promote accurate validation and benchmarking of com-
putational tools.

From the structural point of view, each sequence can have
one or more assigned biological units that denote biolog-
ically relevant quaternary structures of asymmetric units
stored in the PDB database (14). For representative biolog-
ical units, the HotSpot Wizard 3.0 (15) calculation was ex-
ecuted to compute additional sequential and structural an-
notations. These annotations can help with the analysis of
selected mutations and serve as pre-calculated features ap-
plicable in machine learning models.

Stability data acquisition and curation

FireProtDB is composed of the data from four sources: the
ProTherm database, the ProtaBank database, manual min-
ing of the scientific literature, and data collected in our labo-
ratory (Figure 1). The primary data source was ProTherm.
Due to the multiple problems mentioned in the introduc-
tion, we followed several filtering steps. In the first step, we
retained only those entries that met the following four cri-
teria: (i) they have a single-point mutation; (ii) the mutation
is not an insertion or deletion; (iii) the protein has a Swis-
sProt accession code and/or a PDB identifier; (iv) the en-
try includes a measured ��G and/or �Tm. Secondly, we
performed a validity check of SwissProt accession codes
and updated obsolete entries. ProTherm references muta-
tions by their structure index, i.e., the residue number in
the structure, which in many cases does not match their
sequence index, i.e. the position in the sequence. To over-
come this issue, we used a similar approach as in PDBSWS
(16): use the Needleman-Wunsch algorithm (17) to con-
struct the global sequence alignment of sequences extracted
from PDB and UniProt entries and map the mutations onto
the UniProt sequences. In the next step, we confirmed that
the reported wild-type amino acids are in the correct po-
sitions in the structures and unified the reported units. Fi-
nally, we matched the data with the manually curated entries
in the FireProt dataset (18), updated the values, and marked
them as ‘curated’.

In addition to ProTherm, we explored the studies re-
ported in the ProtaBank database, extracted the thermosta-
bility data, and integrated them into our database. We also
performed a manual literature search using stability-based
keywords such as ‘protein stability’, ‘thermostability’, ‘free
energy upon mutation’, ‘protein stabilization’. We mined
the recent scientific articles reporting mutants with mea-
sured stability data and contacted the authors of the pub-
lications when the relevant data were not available in the
article. All such entries were marked as ‘curated’ as we ex-
tracted them directly from the original publications. Fi-
nally, we reviewed the thermostability data collected in our
lab throughout the last few years and added them to the
database. We perform experimental protein characteriza-
tion in our protein engineering projects on a regular basis,
and measuring protein stability is an essential part of such
characterization. In total, the three sources led to a signif-
icant enlargement of the data size by 62% in terms of all
the entries. The number of curated entries more than dou-
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Figure 1. A schematic representation of the data comprising FireProtDB. The primary source of data is filtered ProTherm (7). The FireProt data subset
(18) was manually curated, compared to the source publications, and marked with the ‘curated’ flag. The publications from ProtaBank (12) and manual
literature search were also used to deposit the data. Each mutation in the deposited data was annotated according to its membership in the published
datasets and those deposited on VariBench (11). The HotSpot Wizard 3.0 (15) annotation tool was applied to each protein entry with a known tertiary
structure.

bled compared to the previously collected cleaned FireProt
subset of ProTherm.

Dataset assignment

In the second acquisition step, we collected 40 datasets from
the VariBench database (11) and literature (18), which were
used previously for training or testing of existing predictors.
Since all these datasets are at least partially derived from
ProTherm, we could label each measurement in FireProtDB

by its membership in the datasets. These labels are partic-
ularly useful for the comparison of new prediction models
to the existing tools. This task is usually done by the perfor-
mance evaluation of predictors on a dataset that is entirely
independent of the training and test sets used for the devel-
opment of the tools. Since the dataset construction is often
laborious and consists of a manual data processing, the pos-
sibility to directly exclude the data present in given datasets
significantly simplifies and speeds up the construction pro-
cess.

Calculation of additional annotations

To provide our users with a more advanced description of
their proteins of interest, we enriched the database by sev-
eral important sequence- and structure-related information.
These calculations were performed by HotSpot Wizard 3.0
(15), which is currently the only tool capable of deriving
all these features in a single calculation (19) and provides
machine-readable results. HotSpot Wizard was executed on
a representative biological unit of each protein and provided
the annotations for a structure, such as the residues located
in protein pockets and tunnels, and a sequence, such as cat-
alytic residues, evolutionary conservation scores, back-to-
consensus mutations, and correlated pairs. These annota-
tions can be helpful for a better understanding of structure-
function relationships as well as for generating features for
machine learning.

RESULTS

Web interface

The web interface was designed for both types of expected
users––protein chemists and software developers. Protein
chemists are often looking for the thermostability evidence
for their protein of interest, and they will benefit from its
interactivity and details pages with additional information.
Machine learning experts and bioinformaticians will be
more interested in advanced filtering capabilities facilitating
the process of construction of highly customized datasets
for the training or assessment of various predictors. The en-
try point to the database is the search form, which allows
browsing in two major ways: (i) a simple full-text search for
querying the database using protein name, UniProt acces-
sion codes, PDB identifiers, protein names, publications, au-
thors or organisms and (ii) an advanced search allowing the
users to construct complex rules based on the relational al-
gebra and all available database fields. The latter is one of
the key features of FireProtDB as it facilitates the construc-
tion of highly customized datasets needed for the develop-
ment of new predictors.

Once the user clicks on the ‘Search’ button, they are redi-
rected to the page with the result table. This table contains
a list of available experiments, their basic annotations, and
measured values. The table is paginated to eliminate possi-
ble performance issues and allows further interactive filter-
ing of displayed values. The user can then easily export the
search results in the CSV format using the ‘Export’ button
at the top or the bottom of the page.

Clicking on a mutation name leads to a page with a more
detailed view, showing all the data entries and datasets that
include the selected mutation. Clicking on a protein name
leads to a page providing the basic information such as
UniProt accession code, organism and Enzyme Commis-
sion number, as well as detailed annotation of secondary
structure, catalytic sites, natural variants and amino acid
charges derived from UniProt database using interactive
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Figure 2. Examples of filtering protocols in FireProtDB. Top: The request filters out the data collected at extreme pH or with extreme ��G values, resulting
in >3500 data points left. Bottom: An example of excluding all the mutations that appear in PopMuSiC, FireProt, or PON-Tstab datasets.

Figure 3. An overview of the data deposited to FireProtDB. Left: The table shows the total number of each substitution pair with the wild type amino acids
in rows, mutant amino acids in columns, and the coloring according to the thresholds of 1 (light green), 10 (medium green) and 50 (dark green) entries for
the corresponding substitution. Right: Histograms showing the top seven proteins by their UniProt IDs, the ��G values, and the cumulative number of
amino acid substitutions.

ProtVista tracks (20). This page also contains a list of all
known biological units and a table with all experimental
measurements.

Search queries

Several types of search queries may be of interest to the
users. The first one relates to data filtering by values (10).

Typically, software developers filter out the data collected
at extreme pH (<6 or >8) due to changes in charged states
for ionizable residues. The entries with large absolute ��G
or �Tm are also sometimes excluded due to likely higher
measurement errors, and also because dramatic changes to
the stability may indicate significant structural alterations
to the wild type, which may become a problem for structure-
based features. The second type is relevant for benchmark-
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ing of a newly designed predictor against the existing tools
or creating a meta predictor. In either case, one usually
needs to derive a data subset that has not been used by
the existing predictors for training. The main reason is
the robust performance estimate, which is typically over-
optimistic for these sets (6). Two corresponding examples
of such filtering protocols are shown in Figure 2.

Database dump

For the users requesting even higher control over the data
and filtering capabilities, we offer the possibility to down-
load the complete dump of the database in the SQL for-
mat. This data file can be easily imported to any mod-
ern MariaDB server, version 10.2, and higher. Since the
database structure is complex and any custom query re-
quires joining of multiple tables, the dump also contains
a pre-defined view ‘mutation experiments summary’. The
summary combines all the tables and provides the data in
a similar structure as the CSV export from the user inter-
face. This view or its definition can serve as a useful starting
point for additional filtering or creating custom queries.

Data statistics

Currently, FireProtDB contains 13274 entries for 237 pro-
teins (Figure 3), from which 8189 measurements origi-
nated from ProTherm. The remaining 5085 entries were
added from our literature search (18%), publications from
ProtaBank (28%), VariBench (53%), and our own records
(1%). In total, 43% entries are destabilizing mutations
(�Tm←1 or ��G > 1 kcal/mol), 14% stabilizing (�Tm >
1 or ��G←1 kcal/mol), and 43% considered neutral (–1
≤ �Tm ≤ 1 or – 1 ≤ ��G ≤ 1 kcal/mol). The database also
includes annotations for 40 various published datasets de-
rived from ProTherm, deposited to VariBench (11), or avail-
able in the corresponding articles and web servers. As far
as enzymes are concerned, those collected in the database
cover the first six EC classes, three of which by >40% on
the second level.

DISCUSSION

The availability of large high-quality datasets is one of
the critical requirements for the advancement of machine
learning-based in silico predictors. While some promising
high-throughput experimental methods have been released
recently (21,22), their validation is still ongoing, and protein
stability experiments are still time-consuming and expen-
sive. Building training and testing datasets is hindered by
the data being hidden in the original articles, generating a
strong demand for their systematic mining, collection, vali-
dation, and homogenization. The existing databases are not
fulfilling all the requirements as ProTherm is outdated and
contains incorrect data, and ProtaBank does not provide
advanced search and export tools and is partly commercial.

FireProtDB is a novel database for experimental ther-
mostability data of protein single-point mutants. It con-
sists of the data manually extracted from ProTherm, arti-
cles from ProtaBank, new data obtained by mining the re-
cent literature, and the data collected in our laboratory. The

database is accessible via a user-friendly graphical web in-
terface allowing the users to search and browse the data in-
teractively. Moreover, all the entries are annotated to indi-
cate whether they belong to the already published datasets.
These annotations, combined with the advanced searching
and filtering capabilities, make FireProtDB a valuable data
resource for machine learning developers interested in con-
structing highly customized datasets.

In the future, we will improve our searching queries and
employ automatic text-mining machine learning-based ap-
proaches (23–25) to accelerate literature mining and data
collection, which will be followed by manual curation. We
will also prepare an interactive form for data submissions
by the users. Finally, we will extend the set of automatically
generated features for mutations and add sequence similar-
ity filtering to improve the data usability by the community
of engineers applying machine learning to predict changes
in protein stability.
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ABSTRACT

The importance of the quantitative description of
protein unfolding and aggregation for the rational
design of stability or understanding the molecular
basis of protein misfolding diseases is well estab-
lished. Protein thermostability is typically assessed
by calorimetric or spectroscopic techniques that
monitor different complementary signals during un-
folding. The CalFitter webserver has already proved
integral to deriving invaluable energy parameters by
global data analysis. Here, we introduce CalFitter 2.0,
which newly incorporates singular value decompo-
sition (SVD) of multi-wavelength spectral datasets
into the global fitting pipeline. Processed time- or
temperature-evolved SVD components can now be
fitted together with other experimental data types.
Moreover, deconvoluted basis spectra provide spec-
tral fingerprints of relevant macrostates populated
during unfolding, which greatly enriches the infor-
mation gains of the CalFitter output. The SVD analy-
sis is fully automated in a highly interactive module,
providing access to the results to users without any
prior knowledge of the underlying mathematics. Ad-
ditionally, a novel data uploading wizard has been
implemented to facilitate rapid and easy uploading
of multiple datasets. Together, the newly introduced
changes significantly improve the user experience,
making this software a unique, robust, and interac-
tive platform for the analysis of protein thermal de-
naturation data. The webserver is freely accessible
at https://loschmidt.chemi.muni.cz/calfitter.

GRAPHICAL ABSTRACT

INTRODUCTION

The thermal stability of proteins is imperative for their cor-
rect biological function, and its disruption often has devas-
tating effects on the host organism. Protein instability leads
to misfolding and aggregation that are associated with many
severe human diseases, such as Alzheimer’s, Parkinson’s or
Amyotrophic Lateral Sclerosis (1), and that gravely limit the
efficient application of proteins in biotechnological, phar-
maceutical, and other industries (2). Our general knowledge
of the key structural and energetic basis of protein stabil-
ity originates predominantly from the mutational unfolding
studies (3,4). Although the framework for the proper analy-
sis of thermodynamic and kinetic stability of proteins has a
long history (5,6), experimental output from many stabiliza-
tion studies is often limited to only a few empirical param-
eters, e.g. apparent melting temperatures (7). Considering
the significant advancement in high-throughput biophysical
techniques and a growing number of data-driven machine
learning tools for protein stability prediction (8), the need
for a robust, easy-to-use, and freely available platform for
analysis of protein thermal denaturation data is therefore
pressing.

To address this, we have previously developed the Cal-
Fitter webserver (9), which enables a global analysis of
temperature-induced protein unfolding data measured with
commonly used biophysical techniques, including differ-
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ential scanning calorimetry (DSC), fluorescence, circular
dichroism (CD), Fourier-transform infrared (FTIR) spec-
troscopies, and temperature jumps. The software integrates
thirteen unique unfolding models, involving a various num-
ber of defined macrostates and different combinations of
reversible or irreversible transitions between them. CalFit-
ter 1.0 compiles the conventionally used reversible models
as well as more complex partially or fully irreversible mod-
els collected from more recent literature (6,10). The former
analyse the data based on the principles of equilibrium ther-
modynamics, whereas the latter treat the data from temper-
ature scanning experiments as a dynamic process under ki-
netic control, sensitive to a particular scan rate, and inte-
grate the equations describing the fractions of states numer-
ically. The detailed mathematical description of these mod-
els can be found in the original publications (9,11). Experi-
mental data can be interactively modelled based on the de-
fined parameters, which allows users to easily test the va-
lidity of the selected model and make verifiable quantita-
tive predictions about protein unfolding behavior. The out-
put of the analysis is provided in an easily processible for-
mat, as physically relevant energy parameters derived based
on the Eyring formalism of the transition state theory, e.g.
Gibbs free energy differences (�G), which are being actively
used as training data for recent machine learning stabil-
ity predictors (12,13). To our best knowledge, it is the only
tool that allows simultaneous fitting of data from tempera-
ture scanning experiments together with unfolding kinetics.
The recent examples of CalFitter use include decoding the
mechanism of domain-swapping of computationally stabi-
lized haloalkane dehalogenase (14), explaining the kinetic
stability of cold adapted subtilase (15), elucidating the ag-
gregation propensity of polyketide cyclase (16), or study of
dihydrofolate reductase evolution (17).

While CalFitter 1.0 has proved integral to the global data
analysis of a wide range of experimental signals, recent
technological advancements in massive data collection of-
fer new opportunities for analysis yet to be fully exploited
in the pipeline. Spectroscopic techniques are conveniently
used to monitor protein unfolding due to their low sample
requirements, moderate to high-throughput, and rich infor-
mational output. Earlier measurements were limited to an
intensity change at a single wavelength (e.g. CD ellipticity)
or the wavelength of the maximum intensity (fluorescence).
However, such simple signals provide an incomplete picture
of the unfolding process and are prone to misinterpretation
(18). In contrast, recent technologies enable monitoring the
entire protein spectra, which directly report on the local and
global conformational changes during the unfolding. Yet
this tremendous informational potential has not been fully
exploited as it was not accompanied by the development of
a suitable analytical toolbox for researchers without the ad-
vanced data analysis background.

In this work, we present a major update of the origi-
nal CalFitter that addresses the current needs of the field
in complete spectral data analysis using singular value de-
composition (SVD). SVD is a powerful mathematical tool
for data dimensionality reduction and has been exploited in
several mechanistic studies of protein folding and unfold-
ing using time-resolved fluorescence (19), small angle X-ray
scattering (20–22), FTIR (23) and other advanced biophys-

ical techniques (24,25). It is widely used for the detection of
potential (un)folding intermediates due to its ability to ex-
tract spectral fingerprints of the protein states contributing
to the overall signal (26–31). CalFitter 2.0 newly features
(i) an easy upload of protein spectra recorded as a function
of temperature (scanning experiments), time (kinetics), or
other parameters (e.g. denaturant concentration, pH), (ii)
the automated SVD analysis of these spectra, (iii) the inter-
active interface for dynamic visualization of the results and
data pre-processing, (iv) the readily available export of the
results in the excel format and (v) the global fitting of the
SVD components from temperature scanning and unfold-
ing kinetics experiments along with other signals, e.g. from
DSC. The addition of the SVD analysis to the CalFitter
pipeline greatly enhances the informational output of the
software by providing spectral fingerprints of the relevant
macrostates populated during protein unfolding. Addition-
ally, based on the users’ feedback, we have completely re-
worked the data uploading procedure to accommodate var-
ious input file formats. The newly introduced changes sig-
nificantly expand the applicability of the CalFitter 2.0 and
make it a unique platform for global analysis of protein de-
naturation experiments.

NOVEL FEATURES

The original CalFitter has been described elsewhere (9), and
its schematic overview, together with the novel functions in-
troduced to the new version, are shown in Figure 1. The
main feature of CalFitter 2.0 is the new SVD analysis mod-
ule that is used as a data pre-processing step prior to the
global fitting or as an independent tool for SVD analysis
of virtually any multi-wavelength datasets. Another criti-
cal feature is a completely reworked uploading wizard sup-
porting various input data formats and uploads from mul-
tiple files. Its interactive interface allows the quick and in-
tuitive selection, labelling, visualization, and pre-processing
of the input datasets. We provide a detailed description of
the uploading wizard in the help section of the webserver
https://loschmidt.chemi.muni.cz/calfitter/?action=help.

SVD ANALYSIS

The input to the singular value decomposition consists of
multi-wavelength data organized in a rectangular m × n ma-
trix in which the m rows represent the wavelengths, and the
n columns represent the experimental points, e.g. spectra at
different times or temperatures. The SVD is a factorization
of the original matrix to three matrices in the form of U�VT

(Figure 1), where the columns of the U are the left singular
vectors (basis spectra), � contains singular values (compo-
nent amplitudes) on its diagonal, and the rows of the VT

are the right singular vectors (time or temperature compo-
nents). The detailed mathematical description of the algo-
rithm procedure, together with the results of its thorough
validation, can be found in the Supplementary Data (Table
S1). CalFitter 2.0 performs the SVD automatically upon the
data upload and displays the results in an interactive inter-
face (Figure 2).

The graphical representation of the SVD results is dis-
played on the right side of the interface (section 4 in Fig-
ure 2). The first ten normalized singular values are shown
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Figure 1. Overview of CalFitter workflow and newly introduced features. The features implemented into the original version 1.0 are shown in grey, while
the novel features introduced into the version 2.0 are depicted in green. The details of individual steps and procedures are provided in the text or can be
found in the original publication (9).

in the bar graph. While their total number corresponds to
the number of wavelengths or experimental points of the
original dataset (whichever is lower, i.e. min{m,n}), gener-
ally fewer than ten components are sufficient to confidently
reconstruct the original data. The numbers in the bar graph
translate to the variation within the dataset that is explained
by the respective component (>98% of data variation is suf-
ficiently explained by the first two components in the ex-
ample in Figure 2). The determination of the correct num-
ber of significant components for further analysis must be
done with great care so that they truly represent all impor-
tant features of the original dataset. Usually, the visual in-
spection of the shape of the basis spectra and regular pat-
terns of the SVD components is the most robust yet sub-
jective criterion. Alternatively, one can apply a cumulative
threshold for the explained variation in the data (e.g. 98%)
and keep only the components that are above it. Several
statistical measures can also aid in the decision. The au-
tocorrelations of each component basis spectrum and am-
plitude vector have been shown to provide practical guid-
ance in determining whether a particular component cap-
tures the meaningful signal or noise in the data (32,33). To
aid the users in the selection, CalFitter 2.0 marks the com-
ponents whose autocorrelation coefficients are above the
0.8 threshold by an asterisk in the Singular values graph.

Their exact values for each component are provided in the
export Excel file, and a detailed description of how these
values are calculated can be found in the Supplementary
Data. In general, the explained variation and the auto-
correlation methods can be applied when a more rigor-
ous quantitative assessment of the SVD results needs to be
carried out. However, the visual inspection of the compo-
nents and their singular values usually suffices to make the
decision.

Basis spectra (wavelength loadings) are depicted in the
middle panel of section 4 in Figure 2. Typically, only the
first few of them correspond to the meaningful signal com-
ponents, while the others represent the experimental noise
(Figures S1 and S3). The number of components to display
and use in the original data reconstruction and subsequent
global data analysis can be changed in the settings section
(section 3 in Figure 2). The unique feature of CalFitter 2.0
is the possibility to assign the basis spectrum of the first
component to that of a known protein state (typically native
state, but others can be used) by uploading its spectrum as
a reference. This increases the interpretability and biologi-
cal relevance of the SVD results by providing spectral fin-
gerprints of other relevant protein species populated during
unfolding. The SVD is automatically recalculated when the
reference spectrum is uploaded.
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Figure 2. Interactive CalFitter 2.0 SVD analysis interface. The interface sections include (1) raw data visualization, (2) spectral reconstruction, (3) exper-
imental parameter specification and data range settings, (4) SVD analysis results graphs and (5) export and upload options. The example data depict the
thermal denaturation of the haloalkane dehalogenase DhaA (UniProt ID: P0A3G2), measured by following the changes in intrinsic protein fluorescence
at the heating rate of 1◦C/min. The asterisks in the Singular values plot indicate that the first three components have the autocorrelations of both the
wavelength loadings and amplitude vectors above 0.8.

Finally, the changes of the component amplitudes with
time (Kinetics SVD) or temperature (Spectroscopy SVD)
are shown in the bottom right graph. These progress curves
report on the evolution of the components throughout the
course of the experiment and can be subjected to the sub-
sequent global analysis of denaturation experiments. These
curves are fully integrated into the workflow of CalFitter
1.0, i.e. they are modelled and fitted analogously and along-
side the other two-dimensional signals such as calorime-
try, spectroscopy, and kinetics (see Global Fitting of SVD
Datasets).

The SVD analysis is fully automated in CalFitter 2.0, and
all graphs dynamically change in response to the changes in
parameter settings or dataset range. Spectral reconstruction
of the raw data based on the selected number of components
can be investigated by moving the slider below the raw data
display on the left-hand side of the interface (section 2 in
Figure 2). Export of the SVD results to an excel file is read-

ily available. In principle, the SVD module can be used to
analyse any type of multi-wavelength data regardless of the
dynamic component (e.g. pH, denaturant, salts). However,
the use of the SVD components in subsequent global fitting
is restricted to the time- or temperature-dependent multi-
wavelength spectral datasets collected at fixed temperatures
or scan rates, respectively.

GLOBAL FITTING OF SVD DATASETS

The global analysis interface and general procedure of Cal-
Fitter have not changed significantly since the first version,
and their description is provided in the original publication
(9). The Data pre-treatment panel of the global analysis in-
terface has been newly expanded by two additional tabs de-
voted to Spectroscopy SVD and Kinetics SVD datasets. The
data treatment options are identical to the corresponding
non-SVD data types, i.e. specification of temperature range
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and normalization is possible for spectroscopy data, and
collation and endpoint selection for kinetics data. The SVD
components available for fitting are restricted to those se-
lected during the SVD analysis. We recommend that only
the non-noise SVD components are used for the global
analysis to avoid overfitting. These are fitted similarly to
other spectroscopic signals using a weighting procedure
based on the number of points to ensure the balanced con-
tribution of datasets to the penalty function of the fitting
procedure (9).

The SVD output is a more accurate and unbiased repre-
sentation of the original dataset compared to the conven-
tional two-dimensional signals, e.g. using intensity change
at fixed wavelengths or the area under the spectrum. The
SVD preserves the informational content of the raw data
while reducing its dimensionality. In contrast, the selection
of an appropriate 2D signal reflecting the spectral changes
during denaturation is made empirically, typically by com-
paring differences between spectra of the native and dena-
tured states. As a result, these signals are often insensitive to
potential intermediates that can be only scarcely populated
during unfolding. For example, in Figure 3, we show the
analysis of the unfolding of haloalkane dehalogenase DhaA
monitored by fluorescence spectroscopy. The denaturation
curves constructed from the conventionally used signals re-
porting on the redshift of the fluorescence maximum (the
ratio of intensities at 350 nm and 350 nm, barycentric mean
– BCM), or overall intensity (the area under the spectrum)
both show a single transition with the overlapping midpoint
temperature around 50◦C, which can be fitted into a simple
two-state unfolding model (Figure S4A). However, the SVD
of the raw data results in three significant components, in-
dicating the presence of an intermediate state. A closer in-
spection reveals that while the first two components reflect
the changes captured by the two-dimensional signals, the
third component, albeit less significant in explained vari-
ance (∼0.2%), has the autocorrelations above 0.8 and shows
two distinct transitions. In fact, all the three components fit
well to the models involving an intermediate state (Figures
S4B, C). Since the singular value of the third component is
low, we confirmed the presence of the intermediate by an
additional measurement using another experimental tech-
nique. In our model case, DSC thermograms consisted of
two transitions and were fitted alongside the SVD compo-
nents to the three-state partially unfolding model (Figure
S5).

Another major advantage of fitting SVD components
over the conventional two-dimensional signals is the abil-
ity to back-calculate the full spectra based on the modelled
parameters and compare them to the original data (Figure
S6). The reconstruction of the original spectra is carried
out by a linear product of the modelled SVD components
and the original SVD basis spectra. The visual comparison
of data reconstructed from the fitting of a different num-
ber of components, therefore, provides additional means
for model validation, identification of potential deviations
from the data, and evaluation criteria of potential data over-
fitting. In the example case study, the first two components
fit well to the two-state model, but the reconstructed spec-
tra deviate from the raw data (Figure S4A). Only the global
fit of all three components to the three-state model pro-

vides satisfactory spectral reconstruction (Figures S4B, C).
The detailed description of the global analysis of multiple
thermal denaturation experiments, including different SVD
datasets, is shown and discussed in detail in the Supplemen-
tary Data (Section Use case Figure S1–S6).

DATA INPUT AND OUTPUT

We have completely reworked the uploading procedure of
the non-SVD datasets based on user feedback to improve
its flexibility and user-friendliness. The software newly sup-
ports a variety of input formats, including Excel .xlsx files
with multiple spreadsheets and fewer requirements on the
data organisation. The new uploading wizard enables nu-
merous interactive data pre-treatment options, including
dataset visualisation, removal, column designation and pa-
rameter specification. Simultaneous upload and quick pro-
cessing of multiple SVD datasets from single or different
Excel files is also supported. At the same time, the input
procedure is backward-compatible, i.e. when the legacy data
format is recognised, the uploading wizard automatically
prefills all the parameters accordingly. Similarly, the results
of the SVD and global analyses can be easily exported
at different stages of the process. Output datasets are or-
ganized logically in multiple spreadsheets within a single
Excel .xlsx file. A detailed step-by-step description of the
uploading interfaces and exporting options is provided in
the help section of the webserver, which can be found at
https://loschmidt.chemi.muni.cz/calfitter/?action=help. Al-
together, all data manipulation steps have been significantly
improved to ensure fast and intuitive application of the Cal-
Fitter and promote its wider use in the scientific community.

CONCLUSIONS AND OUTLOOK

In summary, the main new features and improvements in-
troduced to CalFitter 2.0 include: (i) automated SVD of
multi-wavelength data in an interactive interface, (ii) global
fitting of time- and temperature-dependent SVD compo-
nents with other types of data from protein thermal de-
naturation experiments, (iii) spectral reconstruction of data
based on the modelled parameters, (iv) the option of up-
loading a reference spectrum of a known protein state in
the SVD analysis, (v) the improved data uploading proce-
dure from multiple data formats and (vi) the flexible and in-
tuitive uploading wizard with variety of data pre-treatment
options. The implementation of SVD into CalFitter 2.0
provides an extra resolution to its informational output.
We hope that this unique combination of the two com-
plex mathematical analyses, i.e. SVD and global fitting, in
the single, highly interactive, and freely available platform
greatly diminishes the expertise requirements for their rou-
tine application. CalFitter strives to be the gold standard for
the analysis of thermal denaturation experiments, providing
invaluable quantitative parameters of protein thermostabil-
ity, which are crucial for the development of efficient and
accurate protein engineering tools.

In the future, we plan to introduce new algorithms for
automatic initialization of model parameter values based
on the input data, which will make the fitting procedure
much easier, especially for first-time users. Moreover, we in-
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Figure 3. Differences between global fitting of single wavelength datasets and SVD components. Left: Thermal unfolding of DhaA monitored by flu-
orescence spectroscopy at the 1◦C/min scan rate. Inset: The derivation of the conventional signals commonly used for representation of the changes in
fluorescence spectra during protein denaturation: the ratio of fluorescence intensities at 350 nm and 330 nm (I350/I330), the barycentric mean of the spectrum
(BCM, also referred to as the average emission wavelength), or integrated area of the spectrum. Middle: Comparison of the stability curves derived using
the normalized single variables, and the normalized amplitude changes of the first three SVD components calculated from the dataset (corresponding to
the SVD analysis shown in Figure 2). Right: The fraction of the states calculated from the global fit (blue lines in the middle panel) of the two-dimensional
variables and the SVD components to the two- and three-state unfolding models, respectively. N, native; I, intermediate; D, denatured.

tend to extend the analytical scope of CalFitter by introduc-
ing models involving temperature-induced concentration-
dependent aggregation and an entirely new module for anal-
ysis of chemical denaturation experiments. This will allow
users to analyse the effects of various protein perturbants
(e.g. solvents, additives, pH) on protein energetics in com-
bination with temperature and extract valuable thermody-
namic and kinetic parameters from multi-dimensional en-
ergy landscapes, which is particularly relevant for study-
ing complex phenomena, e.g. cold denaturation. Another
promising direction is an interactive model editor that will
enable users to schematically draw any unfolding scenario,
for which the software will automatically derive the under-
lying mathematical description and respective parameters.
These changes will make CalFitter the ultimate one-stop
shop for the analysis of protein stability.

DATA AVAILABILITY

CalFitter 2.0 is freely available at https://loschmidt.chemi.
muni.cz/calfitter/. The datasets used for the case study and
numerical validation are provided in the Supplementary
data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Protein solubility is an attractive engineering target primarily due to its relation to yields in protein pro-
duction and manufacturing. Moreover, better knowledge of the mutational effects on protein solubility
could connect several serious human diseases with protein aggregation. However, we have limited
understanding of the protein structural determinants of solubility, and the available data have mostly
been scattered in the literature. Here, we present SoluProtMutDB – the first database containing data
on protein solubility changes upon mutations. Our database accommodates 33000 measurements of
17000 protein variants in 103 different proteins. The database can serve as an essential source of infor-
mation for the researchers designing improved protein variants or those developing machine learning
tools to predict the effects of mutations on solubility. The database comprises all the previously published
solubility datasets and thousands of new data points from recent publications, including deep mutational
scanning experiments. Moreover, it features many available experimental conditions known to affect
protein solubility. The datasets have been manually curated with substantial corrections, improving suit-
ability for machine learning applications. The database is available at loschmidt.chemi.muni.cz/
soluprotmutdb.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Protein mutational databases accumulate results from experi-
ments examining how mutations introduced to a protein affect a
selected property. Several such databases have arisen recently,
including FireProtDB [1] for the protein stability data for single-
point mutants, the MPTherm [2] database for membrane protein
thermodynamics, or D3DistalMutation [3] for enzyme activity.
However, there has not been any mutational solubility database
yet despite solubility being a basic characteristic of any globular
protein. Moreover, high solubility is essential for high-dosing pro-
tein therapeutics or for efficient protein production [4,5]. The low-
ered solubility of a body protein due to a mutation may also cause
a disease [6]. And neither too low nor too high solubility is required
for successful structure determination of a protein in the crys-
talline form.

Prediction of solubility change upon mutation is thus an impor-
tant problem. Several predictors for this task were developed, usu-
ally using mutational solubility data sets for training collected
independently from the literature [7–10]. While these attempts
showed great promise, the training datasets were rather limited
in the number of entries and their annotations. These limitations
provide a possible explanation as to why recent studies comparing
the predictors revealed significant room for improvement, as the
latest predictors did not exceed the correct prediction ratio of
70% [10,11].

The data available in the solubility datasets come mostly from
small-scale experiments. These often search for a solubilizingmuta-
tion to a particular protein in order to enhance its insufficient solu-
bility. A small-scale experiment measures only a small number of
mutantsandonlyonedirectionof solubility change is oftenobserved
among all of them. Another drawback is that these experimentsmay
be incomparable due to the different conditions under which they
were conducted.Most typically, a variant of an electrophoresis assay
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andprotein staining isused toassessprotein solubility throughmass
separation, e.g., the SDS–PAGE assay. Other, less frequent methods
include Western blotting, where the soluble fraction of protein of
interest is separated and marked via antigen binding.

In contrast, high-throughput experiments provide many results
from a single run. Apart from the clear advantage of obtaining a
large amount of data at once, they allow a more precise compar-
ison thanks to the elimination of setup differences. High-
throughput methods typically measure solubility indirectly
through another property, e.g., fluorescence, which can be
achieved in an automated manner more easily. For instance, in
recent studies by Whitehead’s group [12,13], fluorescence-
activated cell sorting (FACS) was used to select solubilizing muta-
tions out of almost all possible single-point variants. While such a
strategy is usually applied to one protein at a time, it has the
potential to provide the sufficient data abundance for modern
data-hungry machine learning (ML) methods [14].

Here we present a database incorporating solubility data from
several sources (Fig. 1): (i) curated data from OptSolMut [7], Cam-
Sol [8], A3D [9] and PON-Sol [10] datasets, (ii) recently conducted
deep mutational scanning (DMS) of solubility at Whitehead’s
research group [12,13], (iii) our own literature search for solubility
experiments, and (iv) data from high-throughput experiments cur-
rently conducted in our laboratories.

The database goes beyond the basic reporting of introduced
mutations and their effects on protein solubility. We performed an
extensivemanual curation of each entry based on the original publi-
cations.We also keep track of the experimental setupwherever pos-
sible as it has a major influence on the experimental outcome [17].
This setuphas twomain components: expression-related conditions
(how the protein was produced) and assay-related conditions (how
thesolubilitywasmeasured). For instance, theexpressionconditions
includehost cells, the temperature, and induction timesused.Assays
differ mainly in the physical property used to measure solubility
change. Finally, the data are annotated with dataset memberships,
links to UniProt [15] and its annotations, and HotSpot Wizard [16]
features per sequence or structure as depicted in Fig. 1.

While the database will serve as a valuable source of insights for
protein engineers, structural biologists, or biochemists, we have
made our database convenient for the broad ML and data science
communities as well, e.g., to facilitate using the deposited data in
the development and testing of predictive models. All the afore-
mentioned experimental conditions and annotations are utilizable
as features. We also performed a systematization of reported
changes and created a flexible Export Wizard. The systematization
deals with the verbally-assessed changes – these are discrete and
inexact values with no scale specified by the authors. Export
Wizard allows exporting the filtered data and converting the val-
ues to the desired classes to be used in a target model.

With the advent of high-throughput screening methods, we
may see a flood of mutational solubility data published, and
SoluProtMutDB should serve as a central depository for this type
of data. A centralized and regularly updated depository for muta-
tional solubility data will facilitate the in silico engineering of pro-
tein solubility, which is critical in biopharmacy, biotechnology, or
structural biology. The depository will also be useful for data scien-
tists, ML engineers, protein engineers and medical doctors.

2. Materials and methods

2.1. Data from small-scale experiments

The cornerstones of SoluProtMutDB are four mutational solubil-
ity datasets, published between 2010 and 2017, which we merged
together: OptSolMut [7], CamSol [8], A3D [9], and PON-Sol [10].
Every datapoint in each of these datasets represents a mutated
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variant of a particular protein, where the protein is specified either
by its sequence or Protein Data Bank ID (PDB ID) and labeled
according to the effect on the protein solubility. While none of
the datasets is fully contained in another, they do overlap signifi-
cantly. Therefore, we ensured that each datapoint is contained in
the final database only once and assigned to all the datasets it
appears in. We also added new data from the updated PON-Sol
dataset [11]. Furthermore, as all these datasets only comprise the
solubility data from publications before 2017, we conducted a data
search in more recent literature and added new results.

We carried out manual validation and curation of the datasets
against the source publications as the data are not in a machine-
readable format in most of the source publications. We found
and resolved a substantial number of discrepancies of the follow-
ing types by correction or removal of the affected datapoints:
reports of changes in properties with no clear relation to solubility;
measurements which are not present in the source publication;
wrong values; wrong positions or residues of substitutions.

During the manual processing of the publications, we addition-
ally extracted the data that do not appear in the published data-
sets. These include reported experimental conditions, such as
measurement assay, host organism and strain, temperature, pH,
and concentration method used; originally reported numerical
changes in solubility; and even more than hundred instances of
measured protein variants that were left unnoticed by the authors
of the datasets. We also distinguish the types of solubility the con-
tinuous values referred to: the soluble fraction, soluble concentra-
tion, or total concentration.

During the validation, we assigned a UniProt accession number
(UniProt AC) of an original variant to every datapoint and renum-
bered the mutated positions with respect to the UniProt sequence.
This was necessary as the proteins in the datasets are only assigned
with PDB IDs or protein/gene names, which are, however, less reli-
able, stable, or not unique in comparison to UniProt ACs in the long
term. In the case of PDBs, one structure can refer to several pro-
teins, and a single protein typically has multiple relevant PDBs
with new and refined structures of proteins appearing over time.

2.2. Deep mutational scanning data

The eminent source is the data collected at Whitehead’s
research group – the first use of DMS for solubility screening.
The group measured the soluble expression of the levoglucosan
kinase, TEM-1 b-lactamase, and pyrrolidine ketide synthase vari-
ants in E.coli or yeast assays [12,13]. Their DMS approach consisted
of three steps. The first step was comprehensive saturation muta-
genesis across the entire protein, which yielded a cell library of all
possible single-point mutants. The second step was the selection of
cells with soluble protein. And the third step was deep sequencing
– measuring the frequencies of the variants before and after the
selection procedure of the second step by sampling and sequencing
them. The authors explored two selection procedures: Tat-export
and FACS. In the former, soluble protein provided antibiotic resis-
tance and was required for cell survival. In the latter, the fluores-
cence change upon binding with a fluorescence-enabled antibody
or a green-fluorescence-protein (GFP) tag was exploited as the
proxy to protein solubility, and then the cells with higher solubility
were sorted out using FACS. The enrichment ratio for each variant
was calculated based on the number of reads before and after the
selection, normalized, and reported as the score for the effect of the
mutations on protein solubility.

To make these continuous scores comparable with the discrete
values reported in the other literature, we binned them into 5
levels according to the threshold of 0:15, suggested by the authors
(that is þ10% on a linear scale) to label enhancing mutations, and a
threshold of þ50% for significantly enhancing mutations. Symmet-



Fig. 1. The data sources of SoluProtMutDB and their processing. The primary sources are the merged data from the earlier published datasets of protein-solubility predictors
and the high-throughput data fromWhitehead’s group [12,13]. The datasets have been manually checked with the original publications and corrected accordingly. Apart from
these, we conducted an extensive literature search and deposited more recently published data and the data collected in our laboratories. The information about a dataset
membership and UniProt [15] and HotSpot Wizard 3.0 [16] annotations were added to the entries.

Table 1
The comparison table between reported solubility changes in various reporting
systems. The considered reporting systems (columns) consist of 2 to 5 possible values
of measured effects on solubility (rows), spanning from –– (significantly deteriorat-
ing) over neutral (N) to ++ (significantly enhancing). For example, a substantial
deteriorating change in solubility could be reported as simply deteriorating in the 2-
or 3-value systems or non-enhancing in the unipolar system.
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rically, we used �10% and �33:3% to label slightly and signifi-
cantly deteriorating mutations, respectively. The remaining data-
points were binned into the neutral class. During this process, we
also omitted the scores of nonsense mutations and those having
statistically insignificant enrichment values due to the low number
of reads.

2.3. In-house data

In addition to the published literature, the database contains
the data from medium-throughput experiments on haloalkane
dehalogenase, recently conducted by our research group [18].1

Our assay, validated by comparison with SDS–PAGE on multiple pro-
teins, measures solubility through fluorescence activity introduced
by the split-GFP approach. The mutant library was created with
error-prone PCR, and randomly selected mutants were measured
and sequenced. Measuring was conducted in replicates, and the
mutants with statistically insignificant results were discarded. This
resulted in 22 datapoints available in the database.

2.4. Systematization of values

By analyzing the literature, we identified five patterns appear-
ing in solubility experiments for a mutation effect assessment.
We systematized these patterns into reporting systems as per
Table 1 to make the reported changes comparable even when they
come from different publications and are described in different
terms. These differences are partially due to the use of various
assays as their precision varies, and sometimes the effect was not
quantifiable. In other cases, incomplete information was published.
For example, in experiments aiming to solubilize a particular pro-
tein, only verbal assessment is often reported for mutants not
improving solubility.

We distinguish the orientation (positive, negative, or neutral) of
an effect and, whenever applicable, also its significance (slight or
significant). Altogether, up to five discrete values are defined: sig-
nificantly/slightly deteriorating, neutral, and slightly/significantly
enhancing. This system suggests different resolutions in different
1 https://loschmidt.chemi.muni.cz/soluprotmutdb/protein/103.
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experiments, e.g., a value from the 5-value system should be more
precise than from the 3-value system. Hence, if one mutation is
enhancing in the 3-value system and another is slightly enhancing
in the 5-value system, we can assume the former to be at least as
enhancing as the latter, and possibly substantially more.
2.5. Annotations

In addition to the data extracted from the literature, we anno-
tated proteins on sequence and structure levels. As all the
sequences were mapped to UniProt through their accession num-
bers, we extracted protein names, species of origin, InterPro fami-
lies, and Enzyme Commission numbers from there. We also
manually linked proteins with their structures in PDB. We priori-
tized the X-ray crystallographic structures with the highest resolu-
tion, without ligands or mutations. The assigned structures were
then used as an input to HotSpot Wizard (HSW) [19] to obtain
additional sequence and structural features.

HSW sequence features come from multiple sequence align-
ment of homologous sequences. HSW obtains these sequences by
a BLAST search [20] against the UniRef90 database [21] and clus-
ters them using the UCLUST algorithm [22] with a 90% sequence
identity. Sorted by the coverage of the BLAST query, the top 200
cluster-representing sequences are selected and subsequently
aligned using Clustal Omega [23]. The resulting alignment is then
employed (i) to estimate the conservation score for each position

https://loschmidt.chemi.muni.cz/soluprotmutdb/protein/103


Table 2
Current statistics of the database. The most
recent numbers are available at loschmidt.-
chemi.muni.cz/soluprotmutdb as the data-
base is regularly updated with new data.

Datapoints 32992
Mutant variants 17392

of which multi-point 157
Publications 110
Proteins 103
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using the Jensen-Shannon divergence [24], (ii) to identify corre-
lated positions using the consensus prediction of several tools inte-
grated with HSW, and (iii) to identify potential back-to-consensus
mutations, i.e., the positions in the multiple sequence alignment
where an amino acid in the query sequence differs from the major-
ity of amino acids at conserved positions.

Apart from sequence features, the following structural features
are included: (i) the protein secondary structure calculated by
DSSP [25], (ii) the accessible surface area calculated with the
Shrake and Rupley algorithm [26], (iii) average B-factors for pro-
tein residues [27], (iv) protein pockets identified by the fpocket
tool [28], and (v) protein tunnels and their bottlenecks calculated
by CAVER [29]. Only the tunnels connected with catalytic pockets
are stored in the database. The structural features are mapped back
onto UniProt sequences using the SIFTS database [30].

2.6. Database structure

Measurement results of differential solubility experiments are
at the core of our database. Each result is linked to a protein variant
defined by a particular protein and a set of substitutions in its
sequence. The effect of any protein variant on solubility contains
a difference in the measured property compared to the original
protein variant, both measured under the same experimental
setup. This setup includes the host cell, assay, or temperature used
and is linked to the corresponding results. The corresponding pro-
tein is identified by UniProt AC, and the mutated positions are
based on the UniProt indexing. Each result has its alphanumerical
accession code, which is meant to be stable, searchable, and there-
fore citable. In addition, each result may be linked to one or more
published datasets.
Fig. 2. The distribution of protein variants in the database by their mutational
effects on solubility. The distribution is divided into 5 levels: neutral (N), slightly/
significantly desolubilizing (�/��) and solubilizing (+/++). Notably, two thirds of
the mutants show a deteriorating effect.
3. Results

The basic statistics summarizing the content of the database are
given in Table 2. The total number of datapoints consists of (i)
merged 764 (610 unique) datapoints from the previously pub-
lished datasets, (ii) Whitehead’s DMS data – accounting for
32081 of the datapoints, (iii) 279 new measurements from the lit-
erature and (iv) 22 measurements carried out in-house.

The data reveal that a randommutation likely has a desolubiliz-
ing effect, as shown in the mutational effect distribution in Fig. 2.
Only 18% of mutants increase solubility and just one third of them
significantly. This is confirmed when the distribution is plotted per
protein (Fig. 3). The three most frequent proteins from small-scale
experiments, on the other hand, display a strong distribution bias
compared to the DMS data and the ‘Other’ category alike. The exact
ratio is protein-dependent.

While the database size is several orders of magnitude larger
than the sizes of the prior datasets, the results from the high-
throughput experiments from Whitehead’s group dominate the
deposited data. The exhaustiveness of Whitehead’s data provides
the database with great variability in mutated positions and in
combinations of substituted and target amino-acid pairs (Fig. 4)
but is limited to only three proteins. The protein variability of
the database is provided by the rest of the data - Fig. 3 contrasts
the entry counts for these three proteins with the remaining ones.

We kept the FAIR principles (Findable, Accessible, Interopera-
ble, Reusable) [31] in mind during the database development. In
addition to making the data accessible and searchable online (see
the section 3.1) and exportable in a machine-readable format
(see the section 3.2), we also assigned a unique accession code
(SPMDB AC) to each entry of a measurement result. The accession
code is an identifier that is stable in time and can be used for
searching or linking. Our database crosslinks SPMDB AC with Uni-
Prot, PDB, and InterPro databases.
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3.1. Interface

SoluProtMutDB has a user-friendly web interface enabling its
users to browse, search, and export the data. The ‘Show all’ option
in the navigation bar leads to the result table listing all the entries
available in the database (Fig. 5). To filter these entries, the search
at the top of the page can be used in two ways: (i) a full-text search
by protein names, UniProt accession codes, PDB identifiers, Inter-
Pro entries, EC numbers, publications, dataset names, organisms,
host cells, or SPMDB AC; or (ii) an advanced search capable of com-
bining several queries on database fields (Fig. 6). The displayed
data in the search results can be exported using Export Wizard
by clicking the ‘Export’ button (see the section 3.2).

Protein and variant pages can be accessed from the result table
by clicking on a protein name or mutation, respectively. A variant
page shows all measurements for the particular protein variant. A
protein page shows basic information about the protein, such as
UniProt AC, species, EC number, assigned InterPro families, or the
table containing experimental data for this protein. In addition,
interactive ProtVista tracks [32] visualize the following sequence
features: the secondary structure, catalytic sites, natural variants,
amino-acid charges, catalytic pockets, tunnels, B-factors, conserva-
tion, and back-to-consensus mutations. The structure, if available,
is shown using the Mol* viewer [33] (Fig. 7). Mutated positions can
be highlighted in the structure by clicking on the eye icons in the
data table.



Fig. 3. The six most represented proteins in the database by their entry counts. The
data for the first three proteins come from deep mutational scanning experiments.
The ‘Other’ category contains the remaining 97 proteins. The horizontal axis has a
logarithmic scale, and the pie charts on the right display mutational effect
distribution per category with the same color coding as in Fig. 2: neutral,
desolubilizing and solubilizing mutations.

Fig. 4. A matrix showing the numbers of mutation occurrences in the database
‘from’ (rows) and ‘to’ (columns) specific amino acids. The R column and row
represent sums of mutations ‘from’ and ‘to’ given amino acids, respectively. A cell
color saturation shows the abundance of the corresponding combination.
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The Datasets page lists the known mutational solubility data-
sets. Further details, including the authors and the links to the pub-
lication and the raw dataset, can be obtained by clicking on a
dataset name. Furthermore, the dataset page contains statistics
on the overall distribution of solubility effects in each dataset
and the similarity to the other datasets.

3.2. Data export

The complete database can be downloaded as a MariaDB data-
base server dump in the SQL format. In addition to this option, we
6343
developed Export Wizard for user-friendly exporting a currently
browsed subset of the database, e.g., defined by the active search
filter, as a tabular dataset in the CSV format. This functionality is
specifically aimed at data scientists and machine learning develop-
ers to allow them to analyze or use the data with minimum pro-
cessing effort. Optionally, additional filtering/labeling and data
augmentation may be applied before data export.

The filtering also allows selecting only the results measured in
continuous values, suitable for a regression analysis and modeling.
The alternative is the labeling that adapts the data to a specific
model according to the number of bins distinguished by effects
on solubility: after selecting a model from Table 1, each exported
datapoint is assigned a label from that system. If a reported effect
is not present in the selected system, it is either converted to a par-
tially compatible label or dropped. The process may be adjusted by
selecting one of the abundance, reliability, or compromise modes.
The first option converts as many values as possible; the second
option leaves out all incompatible values; and the third option
compromises on the significance, i.e., all converted labels are
marked defensively as a slight change. Users can display the active
conversion table by clicking ‘See details’. The user interface for this
step is shown in Fig. A.6.

Finally, in the case of ML-dataset creation, users may want to
use the data-augmentation (data-symmetrization) function, which
adds the reverse mutations to the dataset, i.e., datapoints with sub-
stituted and target residues swapped and inverse solubility effects.
This will resolve the likely problem of the imbalance between the
counts of deteriorating and enhancing mutations (Fig. 2), which
has often been reported to decrease the performance of predictors
for other mutational data types [34–36].

4. Discussion

SoluProtMutDB is the first mutational database of solubility data
and is ready to serve as a central depository for data from mutage-
nesis experiments targeting protein solubility. To date, our data-
base contains almost 33 000 experimental results of solubility
effects upon mutations, thereby representing an essential digital
resource for this type of data. The database comprises the previ-
ously published datasets and new data from the more recent liter-
ature. We have improved the reliability of these datasets by
manual curation and overlap checks. We examined over a hundred
original publications from which the data were gathered, including
a few studies that produced hundreds to thousands of datapoints
each, thanks to the use of such high-throughput experimental
techniques as FACS. Lastly, we deposited the solubility data mea-
sured in our group. We will maintain the database, add new data,
and continue with the curation process.

We believe the database is of great value for data scientists and
will help to understand the mechanisms controlling solubility.
With this in mind, we also focused on the ML potential of the data-
base by making our database friendly for the ML community: (i)
we ensured the data are reliable; (ii) we systematized the solubil-
ity effects reported in the literature to be easily understood by the
experts outside biology; and (iii) we created ExportWizard to facil-
itate adaptation of the data for ready-made ML models. As a result,
we expect that the user-friendly web interface and the other steps
taken will broaden the audience and user community. The data can
now be analyzed or modeled, even without a deep understanding
of the underlying technical or biological details.

Thanks to the new data published in recent years, the database
is an order of magnitude larger than an average solubility dataset.
This abundance comes from recent high-throughput experiments,
generating a more realistic distribution of target amino acids and
observed effects compared to the previous datasets owing to the
possibility of covering all possible single-point mutants.



Fig. 5. An example of a result table. For clarity, only the most important columns are displayed by default: protein names, curation flags, mutations, solubility effects, and
host cells. The table is paginated to avoid performance issues. A solubility effect graphic depicts both an effect and a value system provided in Table 1. The binning system is
given by the number of circles, whereas the effect is given by one of the signs: orange minus (�) for deteriorating, black tilde (�) for neutral and blue plus (+) for enha.ncing
mutations.

Fig. 6. The advanced search with an example of a filtering protocol. In this example,
the database will find measurements from OptSolMut and PON-Sol datasets with
enhancing or deteriorating solubility effect.

Fig. 7. The visualization of mutations in a protein with a known 3D structure. User-
selected mutations can be highlighted in the structure. In this example, the mutated
positions resulting in a significant change in solubility are highlighted in yellow.
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Specifically, the DMS experiments manifest their strength as
they show no extreme per-protein deviation of the effect distribu-
tion (Fig. 3) from the overall distribution (Fig. 2), which is of partic-
ular importance for ML applications. The DMS data are highly
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representative as they lack a selection bias in introducedmutations
(Fig. A.3). Moreover, the substituted amino acids in the database
follow the distribution of amino acids seen in nature (Fig. A.2). In
contrast, the selection bias is apparent in the small-scale experi-
ments, even when all their data are merged (Fig. A.4). In terms of
effect distribution, the DMS data display more desolubilizing
mutations (Fig. A.5). And since the DMS data are measured indi-
rectly and a systematic error of a measurement may be present,
we suggest using non-DMS data for ML model evaluation.

In order not to miss any important factor possibly affecting sol-
ubility, we track many conditions of experiments. Yet, several fac-
tors known or suspected to influence protein expression or
solubility are not stored explicitly in the current version of the
database. Some of these factors are silent mutations, i.e., mutations
on the nucleotide-sequence level that do not propagate into the
amino-acid sequence but may strongly influence soluble expres-
sion, especially heterologous [37]. Another factor is the time of
expression, often not reported clearly, e.g., due to a possible com-
plexity of the assay. Timings of different steps of an experiment
may influence soluble expression, for example, through expression
rate or by providing a different time for molecular interactions
(precipitation, aggregation) [38].

Finally, the database promotes the FAIR principles not only by
making the solubility data more accessible but also by allowing
negative reporting. Currently, many negative findings in solubility
experiments remain unreported as they do not bring the desired
outcome to the scientists. We encourage the deposition of negative
solubility data in SoluProtMutDB to meet the obligations to publish
results and reach FAIRness, often imposed by grant agencies. At the
same time, these data are of considerable value for the field of ML,
even to the extent comparable to that of positive results. Last but
not least, non-reporting of negative findings may lead to repeating
the same experiments and result in wasting human and material
resources. Results of mutational solubility experiments can be sent
to soluprot@sci.muni.cz to be deposited in the database.
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Fig. A.2. The histogram of the substituted amino acids in the database. The red bar
shows the deviation from the natural distribution of amino acids, as in sequences of
all kingdoms of life [39].
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Appendix A. Supportive information

Figs. A.1, A.2, A.3, A.4, A.5, A.6
Fig. A.1. Amatrix showing thenumbersofmutationoccurrences in thedatabase ‘from’
(rows)and ‘to’ (columns) specificaminoacids.TheR columnandrowrepresent thetotal
numbers ofmutations ‘from’ and ‘to’ given amino acids, respectively. Thematrix is row-
weighted–blue saturationcorresponds to the relative abundance of the given ‘to’ amino
acid in the corresponding row. This is to avoid accentuation of differences naturally
caused by the uneven distribution of amino acids in natural sequences.

Fig. A.3. A row-weighted substitution matrix for Whitehead’s data. It shows some
anomalies, such as visible under-representation of substitutions to methionine (M)
or tryptophan (W).
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Fig. A.4. A row-weighted substitution matrix for all but Whitehead’s data. It shows
the selection bias in the small-scale experiments. For example, alanine (A) or serine
(S) is chosen as a substituent more frequently than other amino acids. Some of the
biases are apparently due to avoidance of introducing a different functional group
by a mutation, e.g., tryptophan (W) is mostly replaced with phenylalanine (F).

Fig. A.5. A comparison between the distributions of effects in the non-DMS and
DMS-only datasets. The latter is skewed towards mutations having desolubilizing
effect.

Fig. A.6. An example of the 2nd step of Export Wizard. Here, the solubility effect of
all selected entries will be converted into the 2-value system using a best guess, and
datapoints will be exported into a CSV file upon clicking on ‘Export’. There is also an
option to skip the wizard and export the raw data.
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Abstract 

Every year, more than 19 million cancer cases are diagnosed, and this number continues to increase annually. Since 
standard treatment options have varying success rates for different types of cancer, understanding the biology 
of an individual’s tumour becomes crucial, especially for cases that are difficult to treat. Personalised high-throughput 
profiling, using next-generation sequencing, allows for a comprehensive examination of biopsy specimens. Fur‑
thermore, the widespread use of this technology has generated a wealth of information on cancer-specific gene 
alterations. However, there exists a significant gap between identified alterations and their proven impact on protein 
function. Here, we present a bioinformatics pipeline that enables fast analysis of a missense mutation’s effect on stabil‑
ity and function in known oncogenic proteins. This pipeline is coupled with a predictor that summarises the outputs 
of different tools used throughout the pipeline, providing a single probability score, achieving a balanced accuracy 
above 86%. The pipeline incorporates a virtual screening method to suggest potential FDA/EMA-approved drugs 
to be considered for treatment. We showcase three case studies to demonstrate the timely utility of this pipeline. 
To facilitate access and analysis of cancer-related mutations, we have packaged the pipeline as a web server, which 
is freely available at https://​losch​midt.​chemi.​muni.​cz/​predi​ctonco/.

Scientific contribution
This work presents a novel bioinformatics pipeline that integrates multiple computational tools to predict the effects 
of missense mutations on proteins of oncological interest. The pipeline uniquely combines fast protein modelling, 
stability prediction, and evolutionary analysis with virtual drug screening, while offering actionable insights for pre‑
cision oncology. This comprehensive approach surpasses existing tools by automating the interpretation of muta‑
tions and suggesting potential treatments, thereby striving to bridge the gap between sequencing data and clinical 
application.

Keywords  Bioinformatics, Cancer, Function, High-performance computing, Machine learning, Molecular modelling, 
Oncology, Personalised medicine, Single nucleotide polymorphism, Stability, Treatment
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Introduction
More than 19 million cancer cases were diagnosed in 
2020 [10] with a projected load of 28.4 million cases in 
2040 [44]. The three traditionally used approaches to 
treat cancer, namely chemotherapy, surgery, and radio-
therapy, generally result in higher mortality rates com-
pared to the less adopted precision medicine-based 
techniques [27]. Next-generation sequencing technolo-
gies form the basis of precision oncology and can help 
generate a large amount of transcriptomic and genomic 
data. On the other hand, these technologies often do not 
provide clinically actionable data. This leads to a divide 
between generation of the said data and their utility, as 
mutants with unknown effects are often found during 
clinical testing [9].

There are not many tools that can help bridge the 
gap between data generation and creation of actionable 
insights. Swiss-PO, an online tool, allows for mapping 
experimentally determined mutations on a curated list 
of 50 genes and their various associated 3D structures. It 
also allows users to visualise multiple molecular interac-
tions; however, it leaves it to the user to intuitively assess 
the structural implications of mutations that have not 
been experimentally determined [25] and it can also not 
predict patient survival outcomes. PSnpBind, a database, 
catalogues changes to binding affinities of ligands due to 
binding site single-nucleotide polymorphisms (SNPs), 
however this database is limited to 26 human proteins 
and is limited to interactions between ligands and bind-
ing site residues [2]. We sought to overcome some of 
these limitations by creating a robust pipeline that can 
predict the effects of missense mutations, even for ones 
which are not experimentally determined, on cancer-
related proteins.

The pipeline relies on advances in fast protein model-
ling, such as AlphaFold [23], prediction of the effect of 
missense mutations on a protein structure [4], and pro-
tein stability prediction [5, 24]. This allows harvesting 
much more information from mutations identified by 
exome sequencing, which can then be used for actionable 
decision making. Additionally, coupling fast ligand dock-
ing in proteins [48] with the availability of multiple drug 
libraries online, such as ZINC [20], it is possible to screen 
novel potential inhibitors for the mutated proteins.

As the interpretation of large-scale genomic and tran-
scriptomic data is limited due to the need to utilise multi-
ple computational tools, performing the aforementioned 
analysis on exome sequences can take time if done manu-
ally. After a cancer diagnosis, treatment is generally a 
race against time, and with the variable success rates of 
conventional “one size fits all” therapies, fast and accu-
rate interpretation of molecular findings and assessment 
of their actionability are of vital importance, especially in 

difficult-to-treat cases. This is where an automated pre-
cision oncology approach will be most useful as it can 
optimise treatment strategies, improve outcomes, and 
increase the quality of life for many patients [30].

Here we introduce a bioinformatics pipeline for the 
analysis of the effect of mutations on stability and func-
tion in cancer-related proteins. The pipeline applies in 
silico methods of molecular modelling, structural bioin-
formatics, and machine learning, and outputs actionable 
data which can be used for decision making. The cou-
pled predictor produces a decision on the oncogenicity 
of the protein mutation by utilising the outputs derived 
at various stages of the pipeline. Moreover, we show the 
application of the pipeline on three use case studies and 
highlight the importance of advanced bioinformatics in 
precision oncology.

Methodology
Manual curation, structure repairs and geometry 
optimization
A list of 44 cancer-related proteins (including one iso-
form of a selected protein) were chosen as targets for the 
manual curation. The selection was based on the impor-
tance of the respective proteins for cancer diagnostics 
and, notably, in cancer treatment. The vast majority of 
curated proteins are either direct targets of therapeutic 
agents or, despite not being targets themselves, represent 
established predictive biomarkers for administering tar-
geted treatments aimed at downstream members of the 
same pathway. Additionally, we included proteins that are 
frequently altered across various cancer types and are rel-
evant to both diagnostics and cancer research (e.g., p53). 
The proteins with their various annotations are listed in 
the Supplementary material SI 1.

The 44 protein sequences and their annotations were 
fetched from the UniProt database [47]. In the case 
of KRAS, two isoforms are provided, including the 
canonical isoform and an isoform that is commonly uti-
lized accross clinical databases of genetic variants. The 
essential residues were re-confirmed in the literature 
as well as in the Mechanism and Catalytic Site Atlas 
(M-CSA) [38] and the SWISS-PROT [6] databases. For 
the purposes of this study, in the case of multi-domain 
proteins, only the catalytic cytoplasmic domains of the 
proteins were considered. The best available structure 
from the wwPDB database [51], the ideal biological 
assembly, as well as the relevant chain (in multimeric 
structures) were selected based on resolution and miss-
ing parts. Canonical co-factors for structures were 
established using the UniProt database; these were 
retained in the structure, and all other ligands, ions, and 
water molecules were removed from the structure (SI 
1). The residue indexes were mapped using the SIFTS 
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database [13]. After a  visual inspection of each target 
protein, the  following four key problematic regions/
positions were identified: (i) missing regions, i.e., low 
resolution regions in the crystal structure,(ii) long, 
missing, and/or intrinsically disordered regions not 
influencing the catalytic site of the protein; (iii) missing 
atoms in the side chain; (iv) amino acids requiring iden-
tity correction, i.e., the sequence in the 3D structure 
did not correspond to that recorded in UniProt.

Each protein structure that required any of these struc-
tural improvements (for the aforementioned problem-
atic regions/positions i, iii, or iv) was modelled using 
MODELLER version 9.24, 2020/04/06, r11614 [16]. The 
modelling was guided by the UniProt-PDB alignment 
provided by SIFTS. Regions identified as intrinsically 
disordered (repair ii) were omitted from the modelling. 
Custom extensions of three MODELLER Python classes 
(Environment, Model, and AutoModel) were developed 
to ensure the following: (i)  the produced models  incor-
porated any relevant co-factor from the template, (ii) 
the produced models were not optimised on the regions 
that did not require repairs, and (iii) structures contain-
ing multiple chains could be modelled and minimised 
at once. If no experimental structure was available, the 
AlphaFold database [23] was searched. The mutant struc-
ture was generated by introducing the desired mutation 
in the target wild type structure by MODELLER, and it 
was guided by a trivial alignment between the wild type 
and the mutant sequences.

For each protein structure, inconsistent torsion angles, 
total energy, or Van der Waals clashes were reduced using 
RepairPDB feature of FoldX 4.0 [5]. Then minimization 
of structures was performed in Rosetta 3.11-static [24] 
with constraints using the Talaris2014 force field [33]. 
The wild type and mutant structures were then aligned 
using DeepAlign 1.135-2-foss-2018b [22] to ensure that 
their coordinates match for further analysis.

Protein stability prediction
The impact of the missense mutation on the stability of 
the protein structure was calculated using Rosetta and 
FoldX. For FoldX the PssmStability command was used, 
water molecules were only taken from the ‘crystal’, pH 
was set to 7, and the number of runs was set to 5. Rosetta 
calculations were made on the minimised structures 
using the ddg_monomer command, following protocol 
3 [24], for which the extent of sidechain repacking was 
set to within 8 Å while using the soft-rep energy function 
and the Talaris2014 force field.

Protein function prediction, phylogenetic analysis, 
and consensus classification
Additionally, PropKa 3.4.0 [40] was used to predict 
the impact of the mutation on the pKA values of the 
proteins, using the propka3 command. Homologous 
sequences with sufficient identity (more than 50%) and 
coverage (± 20% of the query sequence), i.e., UniRef50 
sequences, were downloaded from the UniRef database 
[45], and multiple sequence alignment were generated 
using Clustal-Omega [42] tool from the EMBL-EBI web 
server [32]. This was used for conservation analysis using 
Jensen-Shannon Divergence algorithm [11] and trans-
formed to mutability grades by using HotSpot Wizard 
[43] thresholding. The mutations were also submitted to 
the HOPE [49] web server to collect information from a 
multitude of information sources,  including calculations 
on the 3D coordinates of the protein, sequence annota-
tions from the UniProt database, and predictions by DAS 
(Distributed Annotation System services [37]. Further-
more, PredictSNP [4] was used to predict the effect of the 
amino acid substitution on the target protein function 
through consensus classification.

Pocket analysis and virtual screening
Potential binding pockets within the structures of the 
analysed proteins were calculated using the prank predict 
command in P2Rank 2.3 [26], the resulting pockets were 
visually analysed and manually optimised to cover the 
entire binding sites. Selected pockets were listed in SI 2 
according to their colour codes.

Virtual screening was performed on both the wild type 
and the mutant protein structure. A set of 4380 small 
molecules that were approved by the Food and Drug 
Administration and European Medicines Agency was 
taken from the ZINC database [20]. AutoDock Vina 1.1.2 
[48] was run using the standard vina command, within a 
parameterized grid within each protein. The grid coor-
dinates (SI 1) were created by visually placing the grid 
on the protein structure in PyMOL using the ADPlugin 
[41] and ensuring that the binding pockets with essential 
residues were completely within the grid. The values for 
the binding energy of each small molecule to a wild type 
structure as well as its mutant structure were used to cal-
culate the impact of the mutation on the binding energy.

Machine learning predictor development
The predictive part of the pipeline is a machine-learning 
based tool that was trained on 1073 single-point mutants 
whose effect was classified as Oncogenic or Benign. The 
variants for the Benign class were selected from the gno-
mAD and ClinVar [29] databases. Variants with > 1% 
population frequency in gnomAD, variants annotated as 
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“benign” or “likely benign” in the ClinVar database, and 
variants without ClinVar annotation, for which the clas-
sification as “benign” or “likely benign” is at the same 
time supported by applicable ACMG criteria [39], were 
utilised. The variants for the Oncogenic class were col-
lected in expert-curated precision oncology knowledge 
bases, mainly, but not limited to,  precision oncology 
knowledge base OncoKB by Memorial Sloan Kettering 
Cancer Center [12], as well as The JAX Clinical Knowl-
edgebase by The Jackson Laboratory [35], Personalized 
Cancer Therapy Knowledge Base by MD Anderson Can-
cer Center [28], cBioPortal [18], and the DoCM database 
[1]. Variants with conflicting interpretations across mul-
tiple sources were not included in the list. Both subsets 
were manually filtered for any possible overlaps with the 
datasets used in the PredictSNP consensus predictor and 
its constituents.

The entire dataset (SEQ: 509 oncogenic and 564 benign 
data points) was further annotated by the pipeline of Pre-
dictONCO. The following six features were calculated 
regardless of the structural information available: essen-
tiality of the mutated residue (yes-1/no-0), the conser-
vation of the position (the conservation grade and MSA 
score), the domain where the mutation is located (“cyto-
plasmic”, “extracellular”, “transmembrane”, “other”-one-
hot encoded), the PredictSNP score, and the number 
of essential residues in the protein. For approximately 
half of the data (STR: 377 oncogenic and 76 benign data 
points), the structural information was available, and six 
more features were calculated: FoldX and Rosetta ddg_
monomer scores, whether the residue is in the ligand-
binding pocket obtained from P2Rank (yes-1/no-0), and 
the pKa changes of essential residues obtained from 
PROPKA3. The dataset is available at https://​zenodo.​org/​
recor​ds/​10013​764.

For the training protocol, 20% of the data in each of 
the two sets was kept aside for testing, chosen randomly 
but grouped by positions to ensure that no specific posi-
tion in a protein from the test set appears in the train-
ing set. The following types of predictors were tested: 
the support vector machine (SVM), decision tree (DT), 
and XGBoost classifier (XGB), taken as they are imple-
mented in the scikit-learn 1.2.0 and xgboost 1.7.3 librar-
ies for Python 3.8.15. We also used the PredictSNP 
score alone as a baseline. For each method, we tested a 
set of hyperparameters based on 5-fold cross-validation 
implemented on the training data and receiver operating 
characteristic (ROC) area under the curve (AUC) as the 
metric (Table S1 in SI 3).

The final evaluation consisted of constructing the ROC 
and Precision-Recall curves. Furthermore, a round of 
100 random-state re-initialisations with different ran-
dom seeds was performed to evaluate the robustness of 

the final models. For the area under the ROC curve and 
the average precision values, we also  reported the aver-
age and standard deviation obtained  by bootstrapping 
(N=1000). Since any change to the predictor or data split 
results in a different set of x-axis coordinates in the ROC 
and Precision-Recall curves, we used a fixed grid of 30 
points and applied 1D linear interpolation to obtain the 
y-axis value for each iteration. These values were then 
plotted as 10% and 90% quantiles.

All the training scripts, the model files, and the scripts 
for reproducing the model evaluations are available at 
https://​github.​com/​losch​midt/​predi​ctonco-​predi​ctor/. 
The versions of the software tools and Python packages 
that were used are provided in SI 4.

Results
Development of a fully automated computational 
workflow
We created a bioinformatics pipeline for structure and 
sequence based analysis of the effects of missense muta-
tions on cancer-related proteins (Figure S1). Since the 
pipeline requires curated protein structures, a method 
for curation was developed and applied to a list of 44 
proteins (SI 1), which were then tested to ensure they 
can be handled in the pipeline. The pipeline was assem-
bled using multiple bioinformatics tools, databases, and 
techniques. Figure  1 represents a schematic outline of 
the pipeline, the output of which ultimately feeds into the 
machine learning predictor. The predictor gives a binary 
decision on the effect of mutation with confidence score 
which is helpful in the summation and comprehension 
of results. Three cases of oncological interest were then 
studied using the developed method.

Training of sequence‑based and structure‑based machine 
learning predictors
Initially, we trained three different types of predictors, 
covering different trade-offs between explainability 
and flexibility, and compared their performance with 
the baseline model using the PredictSNP score alone. 
After optimising the hyperparameters (Table  S1 in SI 
3), we evaluated the performance on the held-out 20% 
of the dataset split by position in a protein. The sup-
port vector machines and XGBoost classifiers showed 
superior yet similar performance based on the area 
under the ROC curve and the average precision from 
the Precision-Recall curve (Fig. 2), also confirmed sta-
tistically (Figure S2 in SI 3). We selected the XGBoost 
predictor for the final model due to the interpretabil-
ity of its scores: the SVM model evaluation is based 
on the signed distance to the separating hyperplane, 
without intuitive interpretation. On the other hand, the 
XGBoost classifier directly returns the probability that 

https://zenodo.org/records/10013764
https://zenodo.org/records/10013764
https://github.com/loschmidt/predictonco-predictor/
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a particular mutation is oncogenic. The final XGBoost 
predictor is made up of 15 and 9 decision trees of the 
depth of 1 for structure and sequence data sets, respec-
tively. The feature importance scores revealed that the 
PredictSNP score and conservation had the highest 
information gains (Figure S3 in SI 3). We also tested if 
using the train/test split by proteins would compromise 
the performance and saw only a marginal decrease (Fig-
ure S4 in SI 3), indicating the significant potential of the 
pipeline for other protein targets. The balanced accu-
racy for the sequence-based XGBoost predictor is 87%, 
and for the structure-based XGBoost predictor is 90%.

We also compared the performance of our predictor 
on the test set against several other models (Table  1). 
We evaluated the following individual scores as base-
lines: conservation, PredictSNP, FoldX, and Rosetta. 
In addition, we evaluated the performance of the 
ESM variants model, a recently published workflow 
based on the 650-million-parameter protein language 
ESM1b, which was used to score all possible missense 
variant effects in the human genome [8]. In both set-
tings (SEQ and STR), PredictONCO showed superior 
performance.

Fig. 1  A schematic representation of the bioinformatic pipeline used to predict the effect of a missense mutation on the oncogenicity 
of the protein



Page 6 of 10Khan et al. Journal of Cheminformatics           (2024) 16:86 

Case studies with selected cancer‑associated proteins
The following case studies demonstrate scenarios in 
which the tool has helped to facilitate further clinical 
decision-making. The respective variants featured in 

the case studies were identified across research pro-
jects utilizing high-throughput DNA sequencing tech-
niques, which were conducted by the co-authors of 
this manuscript.

Fig. 2  The Receiver Operating Characteristic and Precision-Recall curves based on held-out test sets. Top: classifiers trained on the dataset 
with the structural features available (STR). Bottom: classifiers trained on the dataset with the sequence-only features (SEQ). Both the support vector 
machine (SVM) and XGBoost (XGB) showed comparable performance superior to the baseline model and decision tree (DT). The reported errors are 
standard deviations obtained by bootstrapping (N = 1000). The PredictSNP score was used as the baseline
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Case study 1‑platelet derived growth factor receptor beta 
PDGFRB N666T
In a patient with myofibroma, sequencing analysis 
revealed an N666T variant of the PDGFRB protein 
(UniProt ID: P09619). Even though some mutations 
of the N666 residue, including N666K [21], N666H 
[36], or N666S [34], have already been documented in 
myofibroma patients, N666T, in particular, lacks pub-
lished functional evidence and was reported in a total 
of one patient in combination with another mutation. 
Therefore, a comprehensive assessment of its effect 
would provide further confirmatory evidence on the 
variant’s pathogenicity, which is substantial, given the 
therapeutic implications of receptor tyrosine kinase 
inhibition. Conservation status showed high evolu-
tionary conservation of mutated position. For amino 
acid 826, one of the essential catalytic residues, a large 
increase in dissociation constant was predicted, sug-
gesting a significant functional impact. Both stability 
predictors suggested a deleterious effect, which is also 
in agreement with the deleterious effect on protein 
function predicted by PredictSNP. Given all this data, 
the oncogenic effect was predicted by the XGBoost 
classifier with 100% confidence. Furthermore, in vir-
tual screening, Sunitinib showed a slightly better 
increase in binding affinity compared to Imatinib, 
which was used as a drug of choice in different myofi-
broma preclinical studies, making Sunitinib a suitable 
alternative option for therapeutic planning. The full 
report can be accessed at  https://​losch​midt.​chemi.​
muni.​cz/​predi​ctonco/​job/​pdgfrb_​N666T

Case study 2‑angiopoietin‑1 receptor TIE2 G1036D
In a patient with a vascular tumour, sequencing analy-
sis revealed a G1036D variant in the TIE2 (UniProt 
ID: Q02763) gene. The G1036D variant represents a 
previously undescribed alteration, which has not been 
documented in the literature, clinical, or population 
databases of genetic variants. Given the rapidly evolv-
ing field of vascular tumour genetics and the possibil-
ity of targeted therapeutics administration, identifying 
novel potentially activating alterations is vastly impor-
tant. Although the residue is non-essential, moderately 
evolutionarily conserved, and only moderate changes 
were predicted for the catalytic residues, the over-
all impact was evaluated by the XGBoost classifier as 
oncogenic with a 99% confidence score and was based 
on a deleterious prediction by both the PredictSNP 
algorithm and stability predictors FoldX and Rosetta. 
This could be approached as a basis to facilitate further 
functional tests to measure mutant receptor phospho-
rylation and, if proven as activating, introduce a con-
siderable therapeutic opportunity (by potentially using 
one of the suggested inhibitive compounds such as Ect-
einascidin, Ponatinib, etc., or other inhibitors of down-
stream signalling cascade) as well as an addition to the 
knowledge on disease pathogenesis. The full report can 
be accessed at  https://​losch​midt.​chemi.​muni.​cz/​predi​
ctonco/​job/​tie2_​G1036D

Case study 3‑tumour protein p53 K101Q
In next-generation sequencing screening for cancer 
predispositions, the K101Q variant of p53 (UniProt 
ID: P04637) was identified in an individual with a nega-
tive family history of cancer. p53 represents the most 
commonly altered gene in all cancers, and p53 variants 
predispose to cancer development when of germline ori-
gin. Therefore, a careful assessment must be performed 
for further genetic counselling. The respective variant 
has not been documented in the literature or function-
ally characterised. With lacking evidence from literature 
and databases of genetic variants, typically only predic-
tion algorithms that employ sequence-based information 
without structural data are available. Therefore, combin-
ing both structural and sequence-related perspectives 
might yield a more accurate prediction. The XGBoost 
classifier predicted the mutation as neutral with an 81% 
confidence score, supported by both the PredictSNP pre-
diction and the stability predictors. Information on evo-
lutionary conservation showed that the wild-type residue 
is not conserved at this position, which may suggest that 
the variant is not damaging to the protein. Based on these 
results and no family history of cancer, the variant should 
not influence subsequent clinical management. Given 

Table 1  Comparison of PredictONCO with other models on the 
test set

PredictONCO values are in bold

The models selected for comparison were individual features and the ESM 
variants predictor. The reported errors are standard deviations obtained by 
bootstrapping (N = 1000).

Predictor ROC AUC↑ Avg. Precision↑

SEQ PredictONCO 0.932 ± 0.018 0.934 ± 0.018
conservation 0.872 ± 0.026 0.802 ± 0.042

predictSNP 0.845 ± 0.027 0.808 ± 0.041

ESM variants 0.923 ± 0.018 0.911 ± 0.023

STR PredictONCO 0.955 ± 0.020 0.988 ± 0.006
FoldX 0.575 ± 0.064 0.867 ± 0.037

Rosetta 0.628 ± 0.064 0.876 ± 0.039

conservation 0.937 ± 0.037 0.970 ± 0.020

predictSNP 0.918 ± 0.030 0.973 ± 0.011

ESM variants 0.929 ± 0.027 0.981 ± 0.009

https://loschmidt.chemi.muni.cz/predictonco/job/pdgfrb_N666T
https://loschmidt.chemi.muni.cz/predictonco/job/pdgfrb_N666T
https://loschmidt.chemi.muni.cz/predictonco/job/tie2_G1036D
https://loschmidt.chemi.muni.cz/predictonco/job/tie2_G1036D


Page 8 of 10Khan et al. Journal of Cheminformatics           (2024) 16:86 

the importance of p53 variants in both somatic and ger-
mline contexts and their same functional impact, this 
case study exemplifies the utility of the tool in the assess-
ment of hereditary cancer predisposition. The full report 
can be accessed at the following link—https://​losch​midt.​
chemi.​muni.​cz/​predi​ctonco/​job/​p53_​K101Q

Discussion
Prediction of the effect of missense mutations on can-
cer-related protein structures is a complicated task. This 
paper presents our pipeline for tackling this problem, 
thus allowing clinical bioinformaticians to easily run 
multiple cancer-related analyses for their target muta-
tions on a curated list of proteins.

A major part of the pipeline capitalises on structural 
bioinformatics, and it requires the presence of good 
quality protein structures for accurate analysis. How-
ever, a high number of cancer-associated structures are 
transmembrane channels and thus only have fragmented 
domain-level structures. Some of them can be multi-
meric, and thus modelling proves a challenge. Despite 
AlphaFold [23] being touted as a major groundbreaker 
in the field of protein structure modelling, it proves inef-
ficient in modelling large multi-subunit, multimeric pro-
teins as quaternary domain level interactions are difficult 
to model. Thus the structural bioinformatics part of the 
pipeline is limited to working with high-quality struc-
tures at the domain level. AlphaFold-Multimer [17] can 
be used to predict the multimeric conformation in 70% 
of heteromeric cases and 72% of homomeric cases to 
limit this problem,  and  it is unclear whether this accu-
racy of predictions is viable for working with oncogenic 
or tumour suppressor proteins, especially when the final 
prediction will likely be used in a medical context.

Currently, the web server provides predictions for 44 
target proteins, which were selected based on their rel-
evance to the field of oncology. Appropriate processing 
of a new structure to be used in the pipeline requires 
expert-level knowledge of multiple bioinformatic tools. 
Curation in this field is a recognized bottleneck, espe-
cially in the case of the interpretation of results [7].) The 
addition of new target proteins to the internal database 
connected to the PredictONCO web server is possible 
and it is offered to the user community based on direct 
requests. Once a protein is curated, all mutations in its 
structure can be easily analysed. Moreover, the pipeline 
can also work with sequence-only data, and the trained 
XGBoost classifier can also reliably predict using only the 
sequence-based features, with only a 4% drop in average 
precision.

The pipeline has no standard run time as it mostly 
depends on whether structural analysis needs to be 

performed along with sequence-based analysis or not. 
The structural analysis increases the computational 
load, and the complexity of the structure can further 
increase the run time. However, the calculations gen-
erally do not take more than two days to complete. It 
is unclear whether this time frame is long or short as 
run time benchmarking would require the existence of 
other similar tools, techniques or pipelines for com-
parative purposes, and specialised methodologies that 
deal with the same case do not exist. However, this time 
window meets the initial requirements for the use of 
the web server in clinical practice as well as for research 
and educational purposes. Furthermore, it helps assist 
in making the result interpretation step easier as inter-
pretation itself is a recognized bottleneck [7].)

Comparison to other similar tools is difficult as, as of 
this writing, we did not come across a pipeline integrat-
ing multiple approaches to predict the effect of a mis-
sense mutation on a cancer-related protein. However 
several databases and online data integrating tools do 
exist. The two most prominent of these databases are 
the International Cancer Genome Consortium (ICGC) 
[46] and The Cancer Genome Atlas (TCGA) [50]. Fur-
thermore, survival analysis tools also exist and are pri-
marily based on 4 types of data: (i) mRNA data, such as 
PRECOG [19], (ii) ncRNA data, such as OncoLnc [3], 
(iii) DNA methylation and mutation data, such as cBio-
Portal [18], and (iv) Protein data, such as TCPA [31]. 
Additionally, the Swiss-PO web tool for mapping gene 
mutations on the 3D structure can be used, but it only 
allows for intuitive and qualitative analysis of mutations 
that have already been experimentally determined [25]. 
In comparison to the aforementioned database, PSn-
pBind is also difficult as it only catalogues changes to 
binding affinities of ligands due to binding site single-
nucleotide polymorphisms (SNPs) [2].

Our pipeline currently only supports missense muta-
tions, as it is unable to handle insertions, deletions, or 
fusions of oncogenic proteins because individual tools 
in the pipeline are not able to analyse them. How-
ever, substitutions do make up a large number of can-
cer-associated mutations as a large number of genes 
associated with various cancer types contain single 
nucleotide variants [15]. For common solid tumours, 
95% of cancer driver mutations in humans are single-
base substitutions. Approximately, 90.7% of these result 
in the amino acid being substituted for another, non-
synonymous one [14]. Thus, even though insertions, 
deletions, and fusions cannot be analysed using the 
pipeline, it still provides predictions for a significant 
majority of cancer-related alterations. The tool is freely 
accessible to the community of bioinformaticians and 

https://loschmidt.chemi.muni.cz/predictonco/job/p53_K101Q
https://loschmidt.chemi.muni.cz/predictonco/job/p53_K101Q


Page 9 of 10Khan et al. Journal of Cheminformatics           (2024) 16:86 	

medical doctors and will provide fast and useful analy-
sis of data from the sequencing of patient samples.
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ABSTRACT: Computational study of the effect of drug candidates on
intrinsically disordered biomolecules is challenging due to their vast and
complex conformational space. Here, we developed a comparative Markov
state analysis (CoVAMPnet) framework to quantify changes in the
conformational distribution and dynamics of a disordered biomolecule in
the presence and absence of small organic drug candidate molecules. First,
molecular dynamics trajectories are generated using enhanced sampling, in
the presence and absence of small molecule drug candidates, and ensembles
of soft Markov state models (MSMs) are learned for each system using
unsupervised machine learning. Second, these ensembles of learned MSMs
are aligned across different systems based on a solution to an optimal
transport problem. Third, the directional importance of inter-residue distances for the assignment to different conformational states
is assessed by a discriminative analysis of aggregated neural network gradients. This final step provides interpretability and
biophysical context to the learned MSMs. We applied this novel computational framework to assess the effects of ongoing phase 3
therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the disordered Aβ42 peptide involved in
Alzheimer’s disease. Based on adaptive sampling molecular dynamics and CoVAMPnet analysis, we observed that both TMP and
SPA preserved more structured conformations of Aβ42 by interacting nonspecifically with charged residues. SPA impacted Aβ42
more than TMP, protecting α-helices and suppressing the formation of aggregation-prone β-strands. Experimental biophysical
analyses showed only mild effects of TMP/SPA on Aβ42 and activity enhancement by the endogenous metabolization of TMP into
SPA. Our data suggest that TMP/SPA may also target biomolecules other than Aβ peptides. The CoVAMPnet method is broadly
applicable to study the effects of drug candidates on the conformational behavior of intrinsically disordered biomolecules.
KEYWORDS: soft Markov state models, intrinsically disordered proteins, adaptive molecular dynamics, Alzheimer’s disease, Aβ42 peptide,
drug candidates, tramiprosate, 3-sulfopropanoic acid

■ INTRODUCTION
Alzheimer’s disease (AD) is globally the fifth leading cause of
death and fourth cause of disability in people aged 75 years and
above and thus represents an enormous societal burden.1

Amyloid-beta (Aβ) peptides play a major role in the develop-
ment of AD, although the mechanism behind their toxicity is still
debated.2,3 A model of toxicity known as the oligomer
hypothesis states that Aβ oligomerizes into toxic pore-forming
oligomers at the neuronal plasma membrane, which ultimately
leads to cell death. Among the different Aβ peptides, the 42-
residue long peptide (Aβ42; Figure 1A) is the most aggregation-
prone isoform.4,5

The Aβ peptides are intrinsically disordered, which makes
them difficult to study both experimentally and computationally.
Intrinsically disordered proteins do not adopt a single well-
defined structure, but rather exist as ensembles of conformations
with similar energies. These ensembles are best characterized by
their population distributions and probabilities of several

properties or descriptors (e.g., radius of gyration and secondary
structure).6,7 The disordered nature of Aβ42 significantly
complicates the analysis of its molecular dynamics (MD)
trajectories, namely, the definition of conformational states,
which is an important step toward a deeper understanding of the
system and its slowest transitions.8 A popular approach for
identifying notable conformational states in MD simulations
involves building so-called Markov state models (MSMs).
Under the assumption of the dynamics being Markovian
(memoryless), these models cluster the conformational space
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into states preserving the Markovianity of the transitions and
estimate the equilibrium distribution and transition rates
between the states. The conventional methods for building
MSMs typically rely on a selection of collective variables,
compressing the high-dimensional MD data and simplifying the
clustering. Recent progress in variational approaches for
conformational dynamics has further allowed scoring different
MSMs, e.g., based on their ability to approximate the slowest
modes of the dynamics, thus facilitating the development of
automatic frameworks for the identification of Markov states.9

Although some of these procedures are quite advanced and
enable, e.g., an accurate estimation of transition rates even from
biased simulation data,10 the manual selection of the collective
variables is typically laborious and can often cause the resulting
models to fail the tests for Markovianity. While MSMs are
extremely valuable tools, they possess certain limitations, such as
the assumption of Markovianity, constraints on state represen-
tation granularity, reliance on extensive sampling, and relatively
rapid relaxation dynamics.11−14 Several alternative method-
ologies exist to address these shortcomings. These include

hidden Markov models (HMMs) to relax the Markovian
assumption,12 approaches incorporating memory effects such
as the generalized master equation (GME) and the generalized
Langevin equation (GLE) for more effective dynamic property
assessment,11 and methods rooted in deep learning.15

A powerful framework based on deep learning is VAMPnet, a
neural network that learns a probabilistic assignment of each
simulation frame to individual states in an unsupervised manner
by maximizing a variational score.16 In contrast to the other
methods, the VAMPnet approach does not relax the
Markovianity assumption but rather combines the search of
collective variables with the optimization of a cost function to
efficiently identify the slowest modes of the system. The
application of VAMPnets to the analysis of Aβ42 trajectories has
already shown great potential in producing robust MSMs for
quantification of the Aβ42 kinetics and equilibrium properties.17
Several recent methods build on the VAMPnet approach to
address the efficiency of protein representation,18,19 scalability
to multidomain protein systems,20 stability of the training
process,21 sampling of rare conformations,22 or the importance

Figure 1. Structures of Aβ42 peptide and the studied small molecules, and properties of the ensembles from the adaptive simulations for the free Aβ42,
Aβ42 + TMP, and Aβ42 + SPA. A) Sequence of the Aβ42 peptide and chemical structures of tramiprosate (TMP) and 3-sulfopropanoic acid (SPA) in
the dominant protonation states at the physiological pH 7.4. The sequence residues are color-coded as follows: red for negatively charged; blue for
positively charged; green for hydrophobic; and black for polar neutral residues. B) Total secondary structural propensity (% SS) of Aβ42 during the
adaptive MDs, in the original NMR ensemble (PDB 1Z0Q with 30 structures), and from the experimental measurements of free Aβ42 in aqueous
solution. C) Secondary structure propensity of Aβ42 by residue, obtained for the global ensembles from the adaptive simulations. The certainty of the
secondary structure assignment was obtained by the statistical variance among ten randomized bins of frames and is represented by the saturation of
the secondary structure color (the more saturated the color, the more certain the assignment, as indicated by the legend). D) Distribution of the radius
of gyration (Rg) of the ensembles from the same adaptive simulations. E) Time evolution of the secondary structure of Aβ42 during the time-based
aligned adaptive samplingMD simulations. The secondary elements are aggregated across all 42 residues, averaged at each time over all the trajectories
parallel in time according to the time-based alignment. Only the timespan covering at least 20 parallel trajectories is plotted.
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of residues based on the attention mechanism.18,23 However, to
the best of our knowledge, a method for aligning and comparing
ensembles of learned MSMs across different systems that would
simplify the biophysical interpretation of the conformational
states by identifying their distinctive features is still missing. In
this work, we have developed such a method to help understand
and quantify the effects of drug candidates on the conforma-
tional space of the analyzed system.
This problem is important in many fields of research,

particularly in AD. Due to the prevalence and severity of the
disease, there is a growing interest in pharmaceuticals capable of
preventing the early stages of the Aβ42 oligomerization and
stopping the pathogenic amyloid cascade.3,4,24 Tramiprosate
(TMP), also known as homotaurine or 3-amino-1-propane-
sulfonic acid, is a naturally occurring aminosulfonate. Even at
high concentrations, it is well tolerated in the human brain,
where it is metabolized into 3-sulfopropanoic acid (SPA)
(Figure 1A). TMP has been reported to prevent the formation of
fibrillar forms of Aβ, reduce the Aβ-induced death rate of
neuronal cell cultures, and lower the amyloid plaque deposition
in the brain.25−27 Clinical trials have shown its ability to slow
down the cognitive decline in patients with homozygous
expression of the apolipoprotein E gene APOE4, similarly to
FDA-approved aducanumab.24,28 TMP can act not only on Aβ,
but also on other pathways that contribute to cognitive
impairment in AD and other neurologic disorders.29,30 ALZ-
801 is a valine-conjugated prodrug of TMP that is currently in
phase 3 of clinical trials for early stage AD patients bearing the
APOE4/4 genotype (NCT04770220).31,32 Preliminary in vitro
and in silico studies suggested that both TMP and SPA can lock
the Aβ peptides in monomeric conformations that are less prone
to oligomerization, thus inhibiting the first step in the
pathological pathway of Aβ.33−35 However, these studies do
not provide sufficient insights to fully explain the mechanism of
action of thesemolecules on Aβ. At themoment, it is still unclear
whether TMP or its metabolite SPA can exert a stronger
biological effect, and this was one of our motivations to carry out
this study.
To analyze the effect of TMP and SPA on Aβ and understand

how these small molecules may prevent the formation of Aβ
oligomers and fibrils, we developed a new computational
framework called comparative Markov state analysis (CoVA-
MPnet). The CoVAMPnet framework reveals the impact of a
small molecule (in our case, TMP or SPA) on the conforma-
tional space and dynamics of an intrinsically disordered
biomolecule (in our case, Aβ) in three steps. First, molecular
dynamic trajectories are generated using enhanced sampling,
and an ensemble of soft MSMs is computed for each system by
training VAMPnet neural networks.17 In particular, we
simulated the monomeric Aβ42 peptide in its free form and in
the presence of drug candidates TMP or SPA. Second, using our
novel alignment method, these ensembles are aligned to identify
similar conformational states across the different systems based
on a solution to an optimal transport problem. This proved
useful in quantifying the similarities and differences in Aβ42
conformations in response to the presence or absence of the
small molecules. Finally, our new approach based on analyzing
gradients of the trained neural networks is used to elucidate the
patterns underlying the learned MSMs and to understand the
biophysical relevance of the molecular features, namely, the
directional inter-residue distances, for the classification into each
state. To our knowledge, this is the first time that such a
biomolecular relevance analysis has been used to compare and

interpret MSMs built by unsupervised machine learning
methods and quantify the effects of drug candidates on the
conformational space of a disordered protein. Experimental
comparison of Aβ42 in its free form and in the presence of TMP
or SPA by circular dichroism (CD), Fourier-transform infrared
spectroscopy (FTIR), nuclear magnetic resonance (NMR), and
fluorometry has further shown the effects of the small molecules
on longer time scales, complementing our computational
findings.

■ MATERIALS AND METHODS
Here, we present only a concise description of themethods used,
focusing mainly on the novel methodology. A complete and
detailed description is provided in Supporting Information and
Methods.
Molecular Dynamics (MD) Simulations

System Preparation. The structures of tramiprosate
(TMP) and 3-sulfopropanoic acid (SPA) were constructed
and minimized using Avogadro 2.36 During the calculation of
partial charges, the structures were further optimized by
Gaussian 09,37 and the antechamber module of AmberTools
1638 was then used to prepare the force field-compatible
parameters. The three-dimensional structural data of the Aβ42
peptide were obtained from the RCSB Protein Data Bank39

(PDB entry 1Z0Q). It resulted from NMR experiments and
contains 30 structures, which were saved separately. The Aβ42
peptide was protonated using PROPKA40 at physiological pH
7.4, the small molecules were embedded (when appropriate),
the systems solvated, and their topologies built using high-
throughput molecular dynamics (HTMD)41 in combination
with the CHARMM36m42 (C36m) force field. We used a
stoichiometry of 100 molecules of TMP or SPA per molecule of
Aβ42. This ratio approximates the experimental conditions
(1000:1) without compromising the computational costs of the
simulations.
MD Simulation Protocols. All the systems were equili-

brated using HTMD.41 The end point of the equilibration cycle
was taken as a starting point for subsequent MD simulations,
either classic or adaptive sampling ones. The simulations
employed the same settings as the last step of the equilibration,
and their trajectories were saved every 0.1 ns. HTMD was used
to perform adaptive sampling of the Aβ42 conformations. Due
to the conformational complexity of Aβ42, three protocols
(namely, A, B, and C) were assessed. Each protocol differed
from the others in the starting structure set, the adaptive metric,
the number of adaptive epochs and replicas, and the total
cumulative MD time (Table S1). Protocols A and B were only
applied to free Aβ42, while protocol C was applied to free Aβ42,
Aβ42 + TMP, and Aβ42 + SPA.
Classical MD simulations were also performed using HTMD,

where only the structure of the first model of the PDB entry
1Z0Q was used as the starting point. The free Aβ42, Aβ42 +
TMP, and Aβ42 + SPA systems were prepared and equilibrated
as described above. These MDs were performed using only the
C36m force field. EachMDwas run in sequential batches of 200
ns each, for a total of 5 μs, and 10 independent replicates were
performed for each system.
Analyses of Properties in CombinedMDEnsembles. In

order to analyze the produced MD simulations, their topologies
were converted from CHARMM to AMBER using ParmEd43

when required. Water molecules and ions were filtered out from
the resulting MDs, which were then compiled into a simulation
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list using HTMD. The cpptraj44 module of AmberTools 1638

was used to compute several properties in the combined
ensembles: root-mean square deviation (RMSD), radius of
gyration (Rg), and linear interaction energy (LIE)

45 between
Aβ42 and TMP or SPA. DSSP 3.046 was used to assign a
secondary structure to every residue in every snapshot of the

combined trajectories, and the default DSSP seven-letter
alphabet was converted to the three main secondary elements
(α-helix, β-strand, and coil, see MD analysis section in
Supporting Information and Methods). Accounting for all the
residues of each secondary structure type in the peptide for all
the analyzed snapshots resulted in the total secondary structure

Figure 2. Analysis of conformational states learned using the variational approach toMarkov processes on the adaptive simulations and their evolution
in time. A) Properties of the states. For each system, we report: (i) the free energy surface (FES) projected on the first two tICA dimensions (gray
maps), where darker shades correspond tomore negative energy regions; (ii) flux diagrams overlapping the FES and projected on the same tICA space,
where each state is represented by a colored circle with the area proportional to the state probability, and the arrows indicate the mean first-passage
timesTM between the states, with the thickness proportional to the transition probability; (iii) equilibrium distribution of the states (bottom-left corner
of FES; the bars represent the 95th percentile of values centered around the median from the ensemble of 20 learned models; see Supplementary Note
7 for details); (iv) superimposition of 20 representative structures from each state, selected based on the highest assignment probability (below FES,
enclosed in colored circles); (v) global mean secondary structure content of each state (below the respective structures). B) Distribution of the learned
states in time (top) and the number of frames available at each time point (bottom). The adaptive sampling trajectories were aligned in time and
concatenated. The state probability at a given time point was computed as the average soft assignment of all available frames at this time point. From
left to right, the state assignments evolve from the beginning to the end of the simulation time. All plots are shown for the free Aβ (left), Aβ + TMP
(middle), and Aβ + SPA (right). The states are numbered and color-coded consistently across the entire panel; the same colors across different systems
indicate aligned states.
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content of the ensemble. Mechanics/generalized Born solvent
accessible surface area (MM/GBSA)47,48 calculations were
performedwith theMMPBSA.py.MPI47 module of AmberTools
14 to obtain the free energy of the peptide for every frame of the
ensemble, from which the peptide intramolecular interactions
were derived.
Comparative Markov State Model Analysis (CoVAMPnet)

This section describes our comparative Markov state analysis
(CoVAMPnet) of adaptive sampling MD simulations of the free
Aβ42, Aβ42 + TMP, and Aβ42 + SPA systems. CoVAMPnet
builds on the variational approach to Markov processes by
VAMPnet neural networks, followed by two new analyses: (i)
alignment of the learned MSM ensembles across different
systems based on a solution to an optimal transport problem and
(ii) characterization of the learned states by the inter-residue
distances based on the neural network gradients.
Learning Markov State Models Using Neural Net-

works. The variational approach to Markov processes
(VAMP)49 was used to learn Markov state models (MSMs)
via unsupervised training of VAMP neural networks (VAMP-
nets)16 with physical constraints.50 VAMPnet learns a nonlinear
function that maps the peptide tertiary structure to a vector of
state probabilities. The physical constraints ensure that the
learned MSM is reversible and that the elements of the matrix
representing the governing Koopman operator16 (a linear
operator propagating the state probabilities in time) are non-
negative. In this work, we used the VAMPnet implementation by
Löhr et al.,17 including the self-normalizing setup.51

The VAMPnet architecture consists of two parallel weight-
sharing lobes: one for a frame at time t and the other for a frame
at time t + τ in the same trajectory, where τ is a fixed lag time.
Each frame was represented on the input as a vector (780
elements) of the upper triangular part of the peptide inter-
residue heavy atom distance matrix without the diagonal and the
first two subdiagonals (i.e., without the distances to the first and
second neighboring residues). The output nodes in each lobe
measure the probabilities of the constructed MSM states for the
input frame. The network was trained on pairs ofMD simulation
frames separated by a selected lag time τ. To obtain the
probabilities of the learned states, the frames were run through
one of the lobes. For each system, an ensemble of 20 models was
built. The pairs of frames were divided into 20 random splits
(90% training and 10% validation) and for each split, three
VAMPnet models were trained with different initialization and
the one with the highest VAMP-E score49 was selected for the
MSM ensemble. The soft assignment of a frame was defined as
the average of its state probabilities across the ensemble, whereas
the hard assignment was defined as the state with the highest
probability in the soft assignment of the frame. Throughout this
work, the soft assignments were used everywhere unless it was
necessary to select example frames from a particular state (such
as the example structures in Figure 2A or the frames representing
the states for the columns of the matrix in Figures S22). Further
details on our VAMPnet setup are described in Supporting
Information and Methods.
Alignment of Learned States for Comparative Anal-

ysis.The order of the states on the output of a trained VAMPnet
is not well-defined and may thus vary. To construct an MSM
from multiple models or compare MSMs of different systems, a
correspondence between states across the models had to be
established. In this work, we generalized the approach from Löhr
et al.17 for the alignment of states within a single system to obtain

an ensemble of aligned MSMs. Then, we introduced a new
method for the alignment of ensembles of MSMs between
different systems to compare the systems and further understand
the effects of the small molecules on the conformational
dynamics of Aβ42.

Aligning States within a Single System. The states from the
20 models within an ensemble were aligned by a constrained k-
means clustering algorithm52 using the average inter-residue
distance matrices Dm

n , where n indexes the models in the
ensemble and m indexes the states in each model. The cluster
centers were initialized by the Dm

n0 matrices of a randomly
selectedmodel n0 in the ensemble. The clustering iterated in two
steps: 1) for eachmodel n, its states were sequentially assigned to
different clusters in the order of the proximity of theDm

n matrix to
the closest unassigned cluster center and respecting the
constraint that two matrices from the same model cannot be
assigned to the same cluster; 2) each cluster center was
recomputed as themean of theDm

n matrices of the corresponding
states. These two steps were iterated until the cluster assignment
did not change. The states in each model were then renumbered
according to the final assigned cluster. The method by Löhr et
al.17 is equivalent to performing only one iteration of our
method. Our approach is thus less susceptible to incorrect
initialization and can lead to a better alignment.

Aligning Ensembles of Markov State Models Between
Different Systems.With each system described by an ensemble
of N mutually aligned MSMs after the single system state
alignment (see above), we proposed a novel method for aligning
ensembles of MSMs across different systems. In particular, we
(i) characterized each state of the given system by a
nonparametric distribution over the ensemble, (ii) defined a
distance metric to compare such distributions, and finally, (iii)
computed an alignment of the ensembles of MSMs between the
two systems by solving an optimal matching problem. Details of
these steps are given next. The N instances of the VAMPnet
network learned for a given system s output N different feature
matrices { } =Dm

sn
n
N

1 (average inter-residue matrices, see Support-
ing Information and Methods for a formal definition of the
feature matrix) describing each of the M states of the system.
Each state m was, therefore, characterized by the distribution

( )m
s of the features over the different VAMPnet instances as

=
=N

D( )
1

( )m
s

n

N

m
sn

1 (1)

where δ is the Dirac delta function defined over the feature space
of inter residue distances in which the simulation frames are
represented and Dm

sn is the inter-residue distance matrix
representing state m of the learned model n for system s. m

s

thus represents the state m of system s with a nonparametric
distribution given by the set of Dirac functions centered at the
feature matrices Dm

sn obtained by the instances of the learned
ensemble.
To exploit the entire distribution of the features of each state,

the distance between two different states was evaluated by
comparing their respective distributions. In particular, we
employed the Wasserstein distance of two distributions as a
distance measure quantifying the cost of aligning two states from
different MSMs as

=c d ( , )ml
s s

W m
s

l
s1 2 1 2 (2)
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where cml
s s1 2 is the cost of aligning statem of system s1 with state l of

system s2 and d ( , )W m
s

l
s1 2 is the Wasserstein-1 distance of the

two respective distributions defined as

= || ||d inf( , ) , ( , )W m
s

l
s

( , )m
S

l
s

1 2
1 2 (3)

where ( , )m
s

l
s1 2 is the set of joint distributions whose left and

right marginals are m
s1 and l

s2, respectively, and ||ξ, ξ′|| is the
Euclidean distance of the two feature vectors ξ, ξ′ distributed
according to the joint distribution γ(ξ, ξ′). In the case of
empirical nonparametric distributions (such as in our case), the
problem of Wasserstein-1 distance computation has an
equivalent linear program formulation and it was solved using
an optimal transport algorithm.53

Finally, the alignment of MSM ensembles was formulated as
an optimization problem. Without the loss of generality, let us
assume that theMSM representing system s1 does not havemore
states than the MSM representing system s2. The problem was
defined as

=
=

carg mins s

m

M

m m
s s

1
( )s s s s

s

1 2

1 2 1 2

1
1 2

(4)

where Ms1
is the number of states of the MSM estimated for

system s1,
s s1 2 is the set of all bijections from the states of system

s1 into any Ms1
-sized subset of states of system s2, and the

bijection s s1 2 is the optimal mapping of states of system s1 onto
the states of system s2. This optimization problem, and thus also
the alignment of MSM ensembles, was solved using the
Hungarian algorithm.54

Gradient-Based Characterization of Learned States.
The differentiability of the VAMPnet model enables inter-
pretation of the states by investigating the feature importance,
which is hard to do using classical Markov state models. This
analysis aimed to understand how important the different parts
of the protein structure (here represented by the peptide inter-
residue distances) are for the definition of different states. While
there exist different methods to investigate the importance of
features in neural networks,55,56 they are usually applied to single
models for simple tasks, such as the classification of individual
images. The challenge of adopting those methods for the current
study was in calculating the feature importance for an ensemble
of MSMs. We proposed a method to identify which features
were important for the classification of the simulation frames
into the learned states, building on the gradient-based method
proposed for image classification.56 In our approach, we
computed the gradients for each of the models in the MSM
ensemble separately and aggregated their results over the
ensemble. To this end, the MSMs produced by the models
needed to be aligned, which we did by using our state alignment
method discussed earlier (see Aligning states within a single
system). The gradients for individual Markov states were
computed as follows:

=
=

g
N

( )
1

m
n

N

nm
1 (5)

where gm is a 780-dimensional vector containing the ensemble-
averaged gradient of the output probability of statem computed
with respect to the input features ξ;N is the number of models in
the ensemble; ∇ξ is the operator of gradient with respect to the
coordinates of the network input features ξ; and χnm represents

the output node corresponding to statem of nthVAMPnetmodel
in the ensemble. Here, the 780-dimensional network input
vector was obtained by vectorizing the upper triangular inter-
residue distance matrix and removing the diagonal and two
subdiagonals. The intuition is that the ith entry of vector gm
expresses the change in the probability of the assignment of the
given frame of the simulation to state m induced by an increase
in the distance of the ith pair of residues at the input of the
VAMPnet network. The above definition computes the gradient
value for an individual frame of the system. To aggregate the
gradient value over a representative set of frames from the
investigated system, we evaluated the gradient vector gm as the
average of gm over 10,000 randomly selected simulation frames ξ.
For visualization purposes, we took the 780-dimensional vector
of evaluated gradients{ } =gm m

M
1 and arranged it back into a 42 ×

42 matrix corresponding to the shape of the inter-residue
distance matrix. These gradients evaluated and averaged over
randomly selected frames should express the importance of
particular residues on average for the classification into a specific
state without any particular assumptions about the input frame.
Estimation of the Free Energy Landscape.We estimated

the free energy landscape of Aβ42 for each of the studied
systems, projected on the first 2 time-lagged independent
component analysis (tICA) dimensions, by performing
Gaussian kernel density estimation on 10% of the simulated
frames.17

Experimental Validation

Aβ42 in its monomeric form (N-methionine-Aβ42 or N-Met-
Aβ42) was produced and purified following an adapted version
of the protocol by Cohen et al.57 Spectroscopic properties of N-
Met-Aβ42 alone or in the presence of TMP, SPA, and the
membrane-mimicking hexafluoroisopropanol (HFIP) were
measured using circular dichroism (CD), Fourier-transformed
infrared spectroscopy (FTIR), and nuclear magnetic resonance
(NMR). Aggregation kinetics were recorded using thioflavin T
(ThT) assays.58 A 1000-fold molar excess of TMP or SPA with
respect to the concentration of N-Met-Aβ42 was used, to
replicate the experimental conditions previously reported to
exert biological effects from those molecules.33

■ RESULTS

Selection of the Computational Protocol for the Simulation
of Aβ42
We aimed to query, by molecular dynamics (MD) simulations,
the conformational diversity and dynamics of Aβ42 (the most
aggregation-prone and the second-most abundant isoform of
Aβ4,5) and the effect of small molecules on such dynamics. The
molar excess of small molecules with respect to Aβ42 was lower
in the simulations (100-fold) than in the experiments (1000-
fold), but it ensured sufficient interactions with the peptide (see
Supplementary Note 1). Some of the key parameters to consider
in any MD simulation are (i) the starting conformation, (ii) the
MD technique and its length, and (iii) the force field. For the
starting conformation, we chose a structure of the full-length
peptide obtained from liquid state NMR (PDB ID 1Z0Q;59 see
Supplementary Note 2 and Figure S1). Because of its enhanced
ability to sample events occurring in longer timescales,60−62 we
applied adaptive sampling. This method consists of several MD
trajectories simulated in parallel and over multiple consecutive
epochs, in an adaptive approach. The MDs from each epoch are
iteratively seeded from selected snapshots from previous MDs,
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according to a predefined criterion. This criterion defines a
feature (also calledmetric or collective variable), and the objective
is to maximize the variability of that feature sampled in the
overall simulation (in this case, the secondary structures).41,63

Based on the literature,64 we explored the AMBER ff14SB65

(hereafter termed A14SB) and CHARMM36m42 (C36m) force
fields as the ones likely to provide reasonable ensembles to study
Aβ42. Notably, C36mwas developed specifically for intrinsically
disordered proteins and has already been used with Aβ42.35 We
tested different combinations of parameters in three adaptive
sampling protocols and compared the results to the initial
structure, experimental data,59,66 and previous reports.8 The
goal was to obtain conformations of Aβ42 diverging from the
initial NMR structure (membrane-like environment) and to
reach average secondary structure ratios that approximate the
experimental ones (in aqueous environment). The selected
protocol used the C36m force field and A14SB was discarded
(protocol C; see Supplementary Note 2, Table S1, and Figures
S2−S4). The respective MD ensembles seemed to be well
converged (Figure S5).
Secondary Structure Content in Simulations of Free Aβ42
and Aβ42 with Ligands
To compare the simulations of Aβ42 alone and in the presence
of an excess of TMP and SPA (Figure 1A), we first analyzed the
global secondary structure content of the peptide in the three
systems (Figure 1B). In the adaptive simulations of free Aβ42,
the peptide showed a larger ratio of coils (77.5%), followed by
the α-helices (16.8%) and finally the β-strands (5.7%). In the
presence of TMP, the α-helix content of Aβ42 peptide increased
by 11.1 p.p. to 27.9%, while the ratio of β-strands remained
unchanged (5.8% vs 5.7%). In the presence of SPA, the
differences in the secondary structure were more striking. In this
case, the content of α-helices was nearly the same as in the
original NMR structure (41.6% vs 42.1%), the ratio of coils was
slightly lower (56.1% vs 57.9%), and the β-strands were half of
those in free Aβ42 (2.3% vs 5.7%). This remarkable result
suggests a strong effect of SPA in preserving the α-helical
structures of Aβ42.
We analyzed the secondary structures in more detail,

dissecting the different propensities by the sequence residues
(Figure 1C). The results showed that Aβ42 could adopt a coiled
structure over its entire sequence, with the highest fractions in
the N-terminal residues 1−8. Helical structures were most
significant for residues 10−20, with α-helical structures near and
above 40% and decreasing in further residues. The β-strands
were the least frequent element, present at the C-terminal tail of
the peptide (residues 30−41) and, to a lesser degree, also around
residues 2−8 and 17−20. This is in agreement with Tomaselli et
al., who reported the formation of an antiparallel β-sheetmade of
two β-strands containing amino acids 18−22 and 37−41.59
TMP had little effect on the secondary structure distribution,
only slightly increasing the frequency of helical structures in the
regions that already had a propensity for it (residues 9−28) and
reducing the β-strands in the N-terminal residues 2−8.
However, the inclusion of SPA resulted in a substantial
reduction of the β-strand content in residues 2−20 and 30−41
and in a significant increase of helical propensity in residues 9−
28 and 30−37. Thus, we observed that both studied Aβ
modulators (TMP and SPA) could increase the regular
structures, specifically protecting the α-helix content of the
Aβ42 peptide. The effect was notably stronger with SPA, which

also prevented or slowed down the transitions from helices into
coils and β-strands.
We further analyzed the different MD ensembles and

calculated the radius of gyration (Rg) to assess the compactness
of the Aβ42 peptide in the three systems. We found that the free
Aβ42 alone had a significantly (with p value < 10−4 from the t-
test) broader and more skewed distribution of Rg (average Rg =
14.2 ± 4.3 Å) than in the presence of TMP or SPA (Rg = 13.3 ±
3.1 and 11.8 ± 2.1 Å, respectively; Figure 1D). This indicates
that the free Aβ42 had a population of extended conformations
that was not found in the presence of TMP or SPA. SPA showed
a particularly strong effect on shifting Aβ42 toward more
compact conformations, compared to the other two systems.
Interestingly, Löhr and coworkers recently reported an
aggregation inhibitor that presented the opposite effect and
stabilized the extended, higher-entropy conformations of
Aβ42.67
Effects of Ligands on the Evolution of Secondary

Structure Elements Over Time.To understand the evolution
of secondary structure elements in the adaptive sampling
simulations, we first performed the time-based alignment and
concatenation of the MDs (Supplementary Note 3 and Figure
S6). We computed the evolution of the mean secondary
structure content along the continuous simulation time of the
aligned and concatenated simulations (Figure 1E). We observed
that the different secondary structure ratios evolved quickly in
the free Aβ42, decreasing for α-helices and increasing for coils
and β-strands. In the presence of TMP, those values changed
similarly but more slowly, while SPA induced the slowest
changes. Classical MDs showed similar trends toward the
apparition of coils and strands over time. However, the capacity
of the small molecules to preserve helical elements was not as
pronounced as in adaptive-samplingMDs (Supplementary Note
4, Figures S7−S9, Table S2). We can speculate that performing
longer simulation times might result in a further decrease in the
levels of α-helices and an increase of β-strands.
Conformational Analysis of Ligand Effects Using Markov
State Models

Initially, we tried to construct conventionalMarkov state models
(MSMs) to analyze the adaptive sampling simulations and
characterize the conformational states of Aβ42. Different
metrics and settings were tested, namely, the RMSD of the Cα
atoms, the secondary-structure, the self-distance of all Cα atoms,
and combinations of those metrics (Supporting Information and
Methods). However, none of these analyses produced reliable
models (see example in Figures S10−S12), so we decided to use
the recently published method for MSM construction using
artificial neural networks. We further extended that method with
new analyses, which proved highly useful for comparing different
systems and improving the interpretability of the results.
Construction of Variational Markov State Models.We

approached the construction of MSMs with VAMPnet16 by
testing several lag times (25, 50, 75, and 100 ns) and different
numbers of Markov states (2, 3, 4, and 5). Since we are
interested in identifying the major differences among the three
systems (free Aβ42, Aβ42 + TMP, Aβ42 + SPA), we prioritized
the characterization of a fewmajor macrostates rather thanmany
microstates. For this reason, we explored only a relatively small
number of states, as done previously by Löhr et al.17 According
to the implied time scales plots (Figure S13) and the Chapman−
Kolmogorov tests (Figure S14), we selected τ = 25 ns as the final
lag time. By evaluating the impact of the additional states on the
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change in the frame classification (Figure S15), together with
considering the transition rates for each state, we decided to use
the 3-state MSM for all the studied systems. Using the selected
parameters, we re-estimated the MSMs for MD simulations
generated by protocol C. We first constructed 16 subsets of data
by gradual addition of epochs to the training and validation data.
From the models, we calculated the exact transition proba-
bilities, mean first-passage times, and transition rates (Figure
S16), as well as the respective structural propensities (Figures
2A and S17). Finally, we verified that additional data did not
significantly affect the estimated implied time scales and that the
size of our data sets was thus sufficient for VAMPnet training
(Figure S18).
Evaluation of the Effect of Using the Soft versus the

Hard Assignment. Interestingly, we found the models to be
quite certain about the classification of frames into the learned
states, thus diminishing the differences between the hard and
soft assignment. For free Aβ42, Aβ42 + TMP, and Aβ42 + SPA,
we found 99%, 99%, and 98% of the frames, respectively, to be
classified into one of the states with probability higher than 95%.
Alignment of Learned States Across Systemswith and

without Ligands. To automatically detect similar conforma-
tional states across different systems and compare the estimated
MSMs, we developed and applied a novel alignment method.
This method aligns different states, by minimizing the global
cost of alignment of MSM ensembles and produces alignment
costs for each pair of matched states Te (see Alignment of
learned states). To distinguish truly aligned states from those
without a counterpart in the other system, we considered two
states as aligned only if their alignment cost was lower than the
threshold Te = 6 (see Supplementary Note 5). This threshold
was selected empirically by comparing the visualized structures
(Figure 2A), the secondary structure content, and contact maps
(Figure S17) of the states proposed for mutual alignment. This
approach allowed us to find two similar states between free Aβ42
and Aβ42 + TMP (states 1 and 2), and one similar state between
free Aβ42 and Aβ42 + SPA (state 1; see Figure S19).
Comparison of Learned States Across Systems with

and without Ligands. The evolution and kinetics of the
constructed MSMs for the studied systems are shown in Figure
2, as well as a representative ensemble of structures for every
state. The free Aβ42 system (Figure 2, left) was characterized by
a sparsely populated source state (state 1, pink, 10% equilibrium
probability), a dominant sink state (state 2, orange, 86%
equilibrium probability), and a metastable transition state
between them that was the least populated of all (state 3,
green, 4% equilibrium probability). The kinetic roles (source
and sink) were derived from the transition kinetic rates and the
mean first-passage times, and from the secondary structure
contents of each state. Hence, the source state (1, pink), with the
structural content most resembling the starting NMR structure
(ca. 58% coil, 40% α-helices, and 2% β-strands), converted fast
into the sink state (2, orange; TM = 2.6 μs), and could be
reasonably formed from the transition state (3, green; TM = 14.6
μs). The sink state was characterized by disorder, with the
highest contents of coils and β-strands and the lowest contents
of α-helices. The transition state represented a middle point in
terms of secondary structure content, and it converted faster into
the source or sink states than it was formed. This kinetic
ensemble is in good agreement with the results previously
described by Löhr et al. for the monomeric Aβ42, namely, in
terms of microsecond transition times between the states, the

presence of one dominant state that was mainly disordered, and
the inexistence of long-lived folded states.17

According to our alignment method, the Aβ42 + TMP system
(Figure 2, center) had counterparts in the free Aβ42, namely, the
disordered sink state (orange) and the helical-rich source state
(pink). The equilibrium probability of the sink was slightly
reduced (state 2, orange, 75%), and the more helical source was
slightly increased (state 1, pink, 12%). A new transition state
appeared in this system (lime, 14% equilibrium probability),
with intermediate secondary structure propensities and a higher
α-helical content compared to the transition state in the free
Aβ42. Perhaps for this reason, the cost of their alignment was
above the selected threshold (Figure S19), and the state was thus
considered a newly formed state. This was supported by the
visualized structures (Figure 2A) and the detailed secondary
structure and contact maps for the respective states (Figure
S17). Overall, the MSM ensemble for the Aβ42 + TMP system
showed higher variability of the equilibrium distribution.
Interestingly, the kinetics of this system was rather similar to
that of the free Aβ42 but significantly slower, generally with
higher transition mean-times. As in the case of the free Aβ42, the
formation rates of the disordered sink state 1 were higher than its
conversion into the other states.
The simulations of Aβ42 + SPA produced a clearly distinct

MSM (Figure 2, right), with the equilibrium distribution more
uniform than in the other two systems. Furthermore, the
confidence intervals of the equilibrium probabilities were even
wider, and the free energy landscape appeared more
homogeneous, implying that the states in Aβ42 + SPA were
less clearly defined compared to the other systems. According to
our alignment procedure, only the source state of Aβ42 + SPA
(state 1, pink, 46% equilibrium probability) found its counter-
part in the free Aβ42 system. The secondary structure content of
this state was similar to the corresponding one in the free Aβ42
and the starting NMR structure (61% coil, 36% α-helices, and
3% β-strands). It is noteworthy how the addition of SPA
disrupted the kinetic ensemble: the remaining two states differed
significantly from those of the free Aβ42, as demonstrated by the
high alignment costs (Figure S19) and the secondary structure
contents. Strikingly, in contrast with the previous two systems,
the unstructured sink state disappeared as the two new
unmatched states with high α-helix contents occurred. This
was especially the case of state 2 (blue, 23% equilibrium
probability), which containedmore α-helices (48.7%) and fewer
coils (50.6%) than the initial NMR structure (42.1% and 57.9%,
respectively). This state 2 evolved over time into state 3 (purple,
31% equilibrium probability; Figure 2B), which had the fastest
conversion to the source state, and thus could hardly be
considered a “sink” state. All three states interconverted between
each other rather quickly, withTM values in the lowmicrosecond
range, suggesting a dynamical metastable equilibrium around
the source state. All these observations are supported by the
study of the time-evolution of the states in the different
simulations (Supplementary Note 6, Figure S20).
We also calculated the radius of gyration (Rg) of the different

states (Figure S21). The free Aβ42 system presented the largest
dispersion of Rg values, with its states showing peaks at higher
values, while for Aβ42 + SPA, all the states displayed low Rg
dispersion and peaks at low values (between 10.6 and 11.0 Å).
This observation is in agreement with the Rg calculations on the
global MD ensembles, discussed above, suggesting that the
systems differ intrinsically in their degrees of structural order and
compactness.
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Characterization of Learned Conformational States
via Network Gradients. To better understand the differences
between the states in each MSM, we attempted to interpret the
molecular features that were determinant to the assignment of
each state. For that, we visualized the ensemble-averaged
gradients of the state assignment probabilities obtained from the
learned neural network models. Figure 3 shows that the
elements near the diagonal were the most important for the
classification into the respective states. As our representation
does not consider the distances of the residues to their first and
second neighbors in the primary sequence, the colored pixels
along the empty diagonal in each heatmap correspond to the
distances of the residues to their third neighbors in the sequence.
Since this roughly corresponds to the length of one turn in an α-
helix (ca. 4 residues), the consistently red or blue color of the
two subdiagonals closest to the white diagonal to the presence or
absence of helices, respectively. This interpretation is also
supported by the average secondary structure content per
residue and the average contact maps (Figure S17).
For the free Aβ42 system, the peptide residues around

positions 10−25 seem to be crucial for the state classification.
The results in the free Aβ42 state 1 heatmap imply that if the red
colored residues in this region got closer to their third and fourth
sequence neighbors in a particular snapshot, the probability of
classifying that snapshot into state 1 (source state) would
increase. This means that state 1 prefers a helical conformation
in this region. On the contrary, the “state 2” heatmap shows that
the probability of classification into state 2 would increase if the
blue-colored residues in this region got farther from their third
and fourth sequence neighbors, i.e., state 2 (sink state) prefers
disorder in this region. The classification into state 3 relies on the

same region (residues 10−25) but is split into two parts:
residues 13−19 (red) and the rest (gray). This implies that state
3 (transition state) prefers a short helix only in residues 13−19.
For the Aβ42 + TMP system, the corresponding heatmaps

show that the presence (red) or lack (blue) of a helix at positions
29−36 are important for distinguishing between states 1 and 3,
respectively, while state 2 can be discriminated based on the lack
of a helix at positions 10−25. For Aβ42 + SPA, the lack (blue) or
presence (red) of a helix at positions 3−12 is relevant for
discriminating states 1 and 3, respectively. State 2 differs by the
presence of two helices at positions 20−27 and 30−35 (red) as
well as by long distances between residues in positions 10−17
(blue pattern).
The states can be compared in more detail by evaluating the

gradients on sets of state-specific frames (Figure S22).
Conversely, the gradient matrices can also be aggregated by
residue into simpler but still very informative plots (Figure S23).
These can help to readily assess the most influential regions
defining the states, compare different systems, and potentially
cross-validate the results with other residue-based analyses, e.g.,
from experimental data (see below).
Molecular Interactions

Ligand−Peptide Interactions. The interactions of TMP
and SPA with Aβ42 were assessed by the linear interaction
energy (LIE)45 and computed for all the 100 ligand molecules
with each peptide residue during the adaptive sampling
simulations. For this purpose, all the snapshots in the
simulations were used. The electrostatic component (ΔGbind

elec)
dominated the interactions formed by Aβ42 with both TMP and
SPA, overshadowing the van der Waals component (Figure

Figure 3. Gradients of the state assignment probabilities of the learned variational Markov state models. Each 42 × 42 heatmap shows the ensemble-
averaged gradients of the model probabilities for the corresponding system and state with respect to the input inter-residue Cα distances. The color
indicates how the probability of the particular state would change for an input frame if the distance between the particular pair of residues increased:
blue indicates that the probability of the state assignment would increase if the distance between the Cα atoms increased whereas red indicates that the
probability would increase if that distance decreased. The presented visualizations correspond to ensemble-averaged gradients evaluated and
aggregated over 10,000 randomly selected simulation frames. Columns: MSMs for the free Aβ42 (left), Aβ42 + TMP (middle), and Aβ42 + SPA
(right) systems. Rows: states 1 (top), 2 (middle), and 3 (bottom) of each model.
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S24). Those interactions were, on average, much stronger with
the charged residues (Figures 4 and S25). This was expected,
considering that both TMP and SPA bear two charges at
physiological pH, separated by only a short alkyl chain (positive
and negative charges in TMP, and two negative charges in SPA).
SPA showed both attractive and repulsive interactions
(respectively, positive and negative ΔGbind

elec; Figure 4); TMP
showed mostly favorable interactions (negative ΔGbind

elec;
Figure S25). The absolute mean interaction energies were also
higher with SPA (from −114 to 71 kcal/mol) than with TMP
(from −50 to 0 kcal/mol). Moreover, the interactions were
highly variable due to the rapid exchange of the TMP and SPA
molecules, which formed unspecific short-lived interactions with
Aβ42. This explains the large populations of snapshots with a
lower range of interaction energies and the smaller populations
of snapshots with strong interactions with the charged residues.
Although TMP and SPA have quite similar structures, the

global effects of SPA on Aβ42 were more striking than those of
TMP. This is probably due to the fact that SPA has a double
negative charge, which reverses the charge of positive groups it
interacts with. Conversely, TMP is zwitterionic (with positive
and negative charges) and thus preserves the charge around the
interacting residues. A comprehensive comparison of the
properties of TMP and SPA and their effects on the simulations
of Aβ42 is presented in Table S3.
Intramolecular Interactions of Aβ42. The interactions

within the Aβ42 peptide were calculated using the molecular
mechanics/generalized Born solvent accessible surface area

(MM/GBSA) method.47,48 Interestingly, the electrostatic
energy prevailed over the van der Waals, but the polar solvation
energy outweighed all the other contributions to the internal free
energy of Aβ42 (Table S4 and Supplementary Note 8). The
peptide was more stable (lower mean total free energy) in the
presence of TMP or SPA than alone in solution. This
stabilization was mainly due to the solvation energy, which
indicates a higher exposure of polar residues to the solvent than
the free Aβ42. This effect is concomitant with an increase of the
internal hydrophobic contacts in the presence of TMP or SPA,
which is consistent with an increase of the compactness of the
peptide, according to the Rg values reported above (Figure 1D).
Intramolecular salt bridges E22-K28 and D23-K28 have been
reported to be important for the conformational transition,
oligomerization, and toxicity of Aβ42.68,69 Analysis of the three
ensembles showed that these salt bridges occurred considerably
less often in the presence of TMP than in the free Aβ42, and
even less with SPA (Figure S26). This suggests a lower
propensity of Aβ42 to form oligomers in the presence of those
small molecules. Due to their charged moieties, TMP and SPA
induce electrostatic dispersion on the residues involved in the
salt bridges, thus weakening those interactions (Table S3).
Similar observations have previously been reported for
apolipoprotein E (ApoE) interacting with SPA.70

Experimental Validation

To validate our computational findings described above, we
experimentally characterized the conformations of N-methio-
nine-Aβ42 (N-Met-Aβ42) alone and in the presence of TMP

Figure 4. Interactions of SPA with Aβ42 studied by molecular dynamics. A) Violin plot of the binding energy of SPA with each residue of Aβ42. The
electrostatic component (ΔGbind

elec) was calculated for all the 100 molecules in every snapshot of the adaptive simulation of Aβ42 + SPA. The plot
shows the distribution of the energy values; the black dots show the mean values; the y-axis uses a quasi-logarithmic scale based on the inverse
hyperbolic sine to highlight the higher absolute values. The residue labels are colored by charge: black for neutral, blue for positive, and red for negative.
The chemical structure of SPA is shown in the upper-right corner. B) Structure of Aβ42 with the main interacting residues. Aβ42 is shown as the putty
cartoon, and the main interacting residues are represented by sticks (structure from PDB ID 1Z0Q). The colors reflect the mean ΔGbind

elec (in kcal/
mol) and range from the most positive (blue) to the most negative (red) values obtained for SPA.
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and SPA. The presence of N-terminal methionine was necessary
for the Aβ42 recombinant expression and does not influence its
aggregation behavior. This is demonstrated by the routine use of
N-Met-Aβ42 in aggregation studies.71,72 Circular dichroism
(CD) of N-Met-Aβ42 in aqueous buffer revealed that the
peptide was mainly disordered (68% of coils, 29% of β-strands,
and 3% of α-helices; Figures 5A and S27A). To replicate the
NMR structure obtained in 20% (v/v) of hexafluoroisopropanol
(HFIP), used herein as the starting conformation for the
computational analysis, we titrated the N-Met-Aβ42 with
increasing concentrations of HFIP. At 20%HFIP, the secondary
structure content of N-Met-Aβ42 was heavily changed in favor
of the α-helices, in agreement with the literature59 (Figure S28).
We repeated the titrations in the presence of a 1000-fold excess
of TMP or SPA. In all cases, no major changes in the CD spectra
were induced by the small molecules during the titrations
(Figures S27A and S28). N-Met-Aβ42 remained mostly
disordered at 0% HFIP and had almost similar helical and

strand content at 20% HFIP, independently of the presence of
TMP or SPA. This is not in agreement with the computational
results, which predicted a significant increase of the helical
content of Aβ42 with the small molecules, especially with SPA.
To determine whether the molecules induced subtle changes

in secondary structure that are below the resolution limit of CD
spectroscopy, we analyzed the N-Met-Aβ42 in buffer and in the
presence of the small molecules using Fourier-transformed
infrared spectroscopy (FTIR). Based on the secondary structure
deconvolution of the amide I bands,73 the FTIR spectra of free
N-Met-Aβ42 and N-Met-Aβ42 + SPA showed fingerprints from
both helical (peak at around 1660 cm−1) and strand
contributions (peak below 1650 cm−1) (Figures 5B and S27B
and S29). At 1000-fold excess of TMP, a shift of the peak
wavenumbers was observed (Figure 5B). The spectrum for N-
Met-Aβ42 + TMP had one peak centered around 1650 cm−1

instead of 1660 cm−1, which might suggest more random
conformation (coils) of N-Met-Aβ42 in the presence of TMP

Figure 5. Experimental validation of computational data using biophysical techniques. A) Circular dichroism spectra of Aβ42. N-Met-Aβ42 (37 μM)
was studied in the absence (black) or presence of a 1000-fold excess of TMP (green), SPA (blue), or 20% HFIP (dashed curves). The curves for SPA
were trimmed below 205 nm to remove the signal from SPA. B) FTIR spectra of Aβ42. N-Met-Aβ42 (60 μM) was studied in the absence (black) or
presence of a 1000-fold excess of TMP (green) or SPA (blue). The bars represent the standard deviations from successive acquisitions. The second
derivatives are drawn as dashed curves. Offset was shifted to improve readability. C) NMR analysis of Aβ42. 1H−15N HMQC NMR spectra of 15N-
labeled N-Met-Aβ42 were determined alone (black, 69 μM) and in the presence of a 1000-fold excess of TMP (green, 58 μM) or SPA (blue, 55 μM).
Assignment is given for free N-Met-Aβ42 (black); the assignment of His6 was ambiguous, thus no CSP was calculated for this residue. D) NMR
chemical shift perturbation (CSP) of Aβ42. N-Met-Aβ42 in the presence of a 1000-fold excess of TMP (green), or SPA (blue) with respect to the free
N-Met-Aβ42. The red dashed line represents the threshold for significance, taken as the standard deviation of all CSPs. E) Summary of the effects of
small molecules on Aβ42 conformations studied by three different biophysical techniques: - indicates that no significant effect was detected, + indicates
a mild effect, and ++ a stronger effect.
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compared to the free peptide. Nonetheless, the large overlap of
the two peaks casts doubts on such interpretations. Further
remarks on differences in secondary structure propensities are
discussed in Supplementary Note 9.
To gain deeper insights into conformational changes of N-

Met-Aβ42 upon the addition of the small molecules, we
employed nuclear magnetic resonance (NMR). The 1H−15N
HMQC spectral fingerprint of N-Met-Aβ42 revealed a narrow
distribution in δ(1H) of the backbone amides (from 7.5 to 8.5
ppm), a characteristic of intrinsically disordered peptides
(Figures 5C and S30). Using 1H−1H NOESY and
1H−1H−15N NOESY-HMQC spectra, we assigned the spectral
fingerprint and computed the secondary structure propensities
using chemical shift indexing.74,75 This method is based on the
published NMR statistics, where each residue is expected to
have a chemical shift within a certain region of the spectrum that
is a function of its local secondary structure. The resulting global
secondary structure propensity was much higher in α-helices
than what was previously obtained by CD (29.6% vs 3%,
respectively; Figure S27A,C). The secondary structure proba-
bilities of the different residues showed the highest β-strand
propensity for the C-terminal tail, and the highest helical
propensity of residues 15−25 (Figure S27D). This is in
agreement with the results from our simulations for the free
Aβ42 (Figure 1C). We titrated N-Met-Aβ42 with increasing
concentrations of TMP or SPA, up to a 1000-fold excess
(Figures 5C and S30) and measured the chemical shift
perturbation (CSP) in the 1H−15N HMQC spectral fingerprint
(Figure 5D). The threshold for the CSP significance was taken
as the standard deviation of all chemical shifts.76 Only small
CSPs were observed when adding SPA, which were not
sufficient to indicate a shift in the global secondary structure
(Figure S27C). This is not unprecedented, as others have also
reported minimal changes in the NMR spectrum of Aβ42 upon
the binding of small molecules.77 CSP was observed across most
of the peptide sequence in the presence of SPA, namely in
regions 2−7, 11−17, 20, 22−27, and 32−37. Strikingly, these
regions correspond to peptide ranges that emerged in the
gradient-based analysis of learned conformational states
(namely, regions 3−12, 10−17, 20−27, 30−35; Figures 3 and
S23). In the presence of SPA, close distances (structural order)
between residues 2−7 are characteristic of the transition
between states 1 (pink in Figure 2A) and 3 (purple in Figure
2A). Similarly, close distances in residues 22−27 and 32−37 are
characteristic hallmarks of state 2 (blue), which is also
determined by long distances (disorder) in the range 11−17.
It is noteworthy that states 2 and 3 in this system are distinctively
different from the other two systems. Thus, gradient-based
analysis of learned states was able to pinpoint similar
conformational events as the ones captured by NMR.Moreover,
regions 22−27 are neighboring the salt bridges between 22 and
28 and 23−28, which are relevant to the conformational
transition, oligomerization, and toxicity of Aβ42,68,69 as
pinpointed in the Intramolecular interactions of Aβ42 section.
Finally, we assessed the fibril formation of N-Met-Aβ42 using

the well-known thioflavin T (ThT) fluorometric assay with and
without the small molecules. We found that neither TMP nor
SPA seemed to significantly reduce the N-Met-Aβ42 fibril
formation rates, as observed by other groups.78 This is in
contrast with HFIP, which is a known solubilizing agent of Aβ42
and a crude membrane mimetic59 (Figure S31). In fact, a change
in the CD spectrum was observed in the presence of HFIP and
either TMP or SPA (Figures 5A,E and S28).

■ DISCUSSION
Alzheimer’s disease drug candidate TMP and its metabolite SPA
are thought to modify the conformational dynamics of the Aβ42
peptide and decrease its propensity to form toxic oligomers.33,34

The conformational diversity of Aβ42 has been previously
explored by exploiting the variational approach to Markov
processes in VAMPnets16 to construct Markov state models
(MSMs), to better capture the slowest processes in MD
simulations.17,67 However, the exact mechanism of action of
TMP, and particularly SPA, on Aβ42 was still unclear. To fill this
gap, we first applied the variational approach to Markov
processes on adaptive sampling MD simulations using
VAMPnets,17 and then ran our newly developed comparative
Markov state analysis (CoVAMPnet) pipeline to (1) align the
learned conformational states across ensembles of different
MSMs, and (2) based on the learned VAMPnet gradients, to
characterize these states by the inter-residue distances. The
CoVAMPnet alignment method proved a powerful approach to
(i) quantitatively compare the different conformational states of
Aβ42, (ii) identify which states were preserved across different
systems, and (iii) identify which states were unique. The
CoVAMPnet gradient-based characterization of the learned
ensembles of Markov states utilizes the end-to-end differ-
entiability of the neural network-based MSMs, i.e., a property
that the conventional methods for MSM estimation lack. The
analysis of gradients allowed us to reason, at the molecular level,
which residues are responsible for the assignment to a specific
state obtained from the variational Markov state analysis. We
expect these newly developed methods, i.e., (i) the alignment of
ensembles of variational Markov state models across different
systems, and (ii) the gradient-based characterization of learned
states, to become valuable for studying the impact of small
molecules on the conformational dynamics of intrinsically
disordered proteins and peptides.79,80

The newly developed analyses were applied to MD
simulations of Aβ42. It is known that the sampling protocol
(namely, the force field, the length of the simulations, the
adaptive metrics, and the simulation method) can highly
influence the global results.81,82 This is largely due to the
intrinsically disordered nature of the Aβ42 peptide, which has a
rather shallow energy landscape with many energy minima
separated by small energy barriers.6,79 For this reason, the
conformational sampling of Aβ42 remains a challenge.81,82

Starting from a helix-rich Aβ42 structure, biased toward the
conformation in the membrane environment59,83 (PDB ID
1Z0Q), we identified the most suitable adaptive protocol to
simulate Aβ42, according to the secondary structure contents
expected in aqueous phase (dominated by coils and β-strands).
In this way, we sampled the conformations and transitions
occurring immediately after the release of Aβ42 from the
transmembrane region to the extracellular fluid. After
approximately 64 μs of adaptive MDs, the free Aβ42 diverged
substantially from the initial structure, increasing the total
amount of random coils and β-strands (as expected) while
decreasing the ratio of α-helices, and became closer to
experimental values and previous reports.59,66,84 We identified
two regions of Aβ42 that were more prone to form β-strands
(mainly residues 2−8, 17−20, and 30−41). The MSMs learned
from the variational Markov state analysis revealed that the most
populated state of Aβ42 is highly disordered and contains some
β-strands. This state is in equilibrium with two other states with
higher contents of α-helices, but still bearing mainly coils. These
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results are in good agreement with recent reports by Löhr et al.,
obtained from much longer simulation times (315 μs).17
The presence of TMP and SPA shifted Aβ42 toward more

structured conformations (less coils and higher content of α-
helices) and reduced the propensity of regions 2−8, 17−20, and
30−41 to form β-strands. This behavior is similar to what has
previously been reported for some aggregation inhibitors85−87

and is in contrast with some others.67 The variational Markov
state analysis showed that TMP and SPA induced a change in
the equilibrium distribution and interconversion rates of the
Aβ42 conformational states. SPA exerted a much stronger effect,
stabilizing new conformational states that were richer in α-
helices than in the other systems. Since β-strand structures lead
to the formation of β-sheets, the precursors that prompt the
oligomerization and fibrillation of Aβ,2,4,5 these results suggest
the potential of TMP and SPA to inhibit or delay both processes.
This can be particularly relevant if we consider previous studies
suggesting that oligomers may start by the formation of β-
hairpins made of β-strands of residues 16−24 and 28−35,88 and
that α-helices in regions 10−2184 or 17−2189 may prevent the
formation of higher oligomers and aggregation. While Aβ42 is
preserved in its monomeric form, it should not be harmful until
it is cleared from the brain, namely, through the binding to
apolipoprotein E (ApoE).90−92 Our simulations suggest that
TMP and SPA may affect the conformational equilibrium of
Aβ42 in the brain and prolong its monomeric soluble state, thus
allowing to extend the effective time of the clearance
mechanisms. Due to their charged terminal moieties, both
TMP and SPA formed mainly electrostatic interactions with the
charged residues of Aβ42. These interactions were nonspecific
and short-lived, but they promoted the exposure of polar
residues (similar to a “solvation” effect), induced Aβ42 to be
more compact, and weakened intramolecular electrostatic
interactions (as previously observed70). Importantly, some of
the intramolecular salt bridges (E22-K28, D23-K28) considered
to promote the formation of β-sheets, aggregation, and
neurotoxicity of Aβ4268,69,88 were disrupted by the presence
of those small molecules. The difference between TMP and SPA
in terms of charge distribution (zwitterionic and doubly
negative, respectively) is likely the main factor responsible for
the overall stronger effects of SPA (see Table S3). The reasons
for the stronger stabilization of α-helices by SPA are not clear.
However, it may be due to competition of the densely charged
ligand with the water molecules, which may lead to preventing
their destabilizing action on the peptide, as previously described
for a series of ions at higher concentrations.93

The CoVAMPnet algorithm developed for identification of
structural features in the learned variational MSMs based on
network gradients proved useful. We were able to identify the
peptide regions with preferential order or disorder in the
different states and pinpoint major differences across the
different systems. Remarkably, this analysis showed good
agreement with the CSPs in the NMR spectra, correctly
predicting the peptide regions most affected by the presence of
SPA. These computational findings were in agreement with
previous studies involving Aβ, TMP, and SPA, namely: (i) the
unstructured nature of the peptide, (ii) shift of the Aβ42
conformations by those ligands toward more compact
structures, (iii) reduction of the β-strand propensity, and (iv)
nonspecific interactions with charged residues.33−35 Reports
also have shown that both small molecules can interact with the
soluble Aβ40 or Aβ42, change their dominant conformation,
inhibit the formation of oligomers and fibrils, decrease the Aβ-

induced neuronal cell death,25,33,34 and have protective effects in
vivo.30

We applied several experimental biophysical techniques to
validate the computational results described above. Although
the experimental outcomes showed only amild influence of both
TMP and SPA on N-Met-Aβ42, several relevant effects were
observed (Figure 5E). FTIR revealed slight changes in
secondary structure upon the addition of TMP, suggesting
higher coil conformation propensity for the peptide. On the
other hand, NMR showed a stronger impact of SPA on the
1H−15N NMR spectral fingerprint of N-Met-Aβ42, indicating
either direct ligand−peptide interactions, subtle changes in
secondary structure, or both. Strikingly, these perturbations
were observed in the same peptide regions highlighted by our
network gradient analysis. TMP did not produce significant
CSPs. Altogether, these results suggest a stronger effect of SPA
on Aβ42 than TMP. Yet, the fibril formation kinetics of N-Met-
Aβ42 seemed unaffected by TMP or SPA.
The experimental results corroborated several computational

findings: (i) the intrinsically disordered Aβ42 interacts with
TMP or SPA molecules through many weak interactions, (ii)
these interactions induce conformational changes on the
peptide, (iii) SPA has stronger influence on Aβ42 than TMP,
and (iv) the regions affected could be predicted by the gradient
analysis of the learned state probabilities. On the other hand, not
all the predictions from our molecular modeling were confirmed
experimentally: (i) Aβ42 showed higher β-strand content
compared to the computational results, and (ii) TMP and
SPA did not change significantly the global secondary structure
propensities of Aβ42 and did not prevent fibril formation. The
differences in the time scales sampled by the simulations
(microseconds) and the experiments (minutes/hours) and the
peptide concentration effects may have contributed to this
discrepancy. Moreover, the membrane mimetic HFIP modu-
lated the impact of TMP and SPA on N-Met-Aβ42, which may
deserve further investigation. An extended discussion of these
phenomena is provided in Supplementary Note 10. In further
works, the development of specif ic binders able to stabilize α-
helices in the regions of Aβ42mentioned above could be a better
approach for designing drugs targeting the neurotoxic
oligomerization of Aβ. The interaction of TMP and SPA with
other proteins participating in the amyloid cascade,94 which has
been demonstrated in the case of ApoE (especially ApoE4),70,95

should also be considered and evaluated in future studies.
Particularly, we have recently shown the strong impact of TMP
and SPA on ApoE4, shifting its structure and properties toward
those of ApoE3 and significantly reducing its aggregation.70 The
observation of significant effects of TMP and SPA on ApoE4,
but weaker ones on Aβ, is also important in the context of a
recently published paper reporting the existence of five subtypes
of AD.96 All subtypes showed a higher prevalence of the APOE
e4 genotype, while only selected ones are characterized by
modified levels of Aβ. In the future, it will be interesting to relate
this information to the data collected within phase 3 of clinical
trials, which will reveal the efficacy of TMP on the different
subtypes.
In summary, in this work, we introduced CoVAMPnet to

compare and interpret learned MSMs across different systems.
CoVAMPnet is composed of two methods: (i) the alignment of
Markov state models and (ii) characterization of learned
conformational states based on network gradients. The
CoVAMPnet approach can be applied to study and compare
any related molecular systems and extract valuable information.
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It can be especially useful to study the impact of small molecules
on intrinsically disordered proteins and peptides, whose
quantitative analysis can be extremely difficult. Furthermore,
we applied CoVAMPnet to study molecular effects of potential
anti-Alzheimer’s drugs on hallmark peptide Aβ42. Our
computational results suggested that TMP, and particularly
SPA, in short dynamic time windows can stabilize structured
helical conformations of Aβ42, potentially preventing its
oligomerization. In vitro validation confirmed the stronger
impact of SPA on Aβ42 and the peptide regions affected by this
molecule. However, in long time ranges, the global secondary
structure was not significantly modified, neither was the Aβ42
aggregation propensity under the experimental conditions. This
suggests the potential existence of additional mechanisms, such
as the suppression of ApoE4 aggregation,81 contributing to the
mode of action and the clinical effects of TMP/SPA in AD
besides the conformational shift of Aβ42.
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Abstract
Summary: Protein design requires information about how mutations affect protein stability. Many web-based predictors are available for this 
purpose, yet comparing them or using them en masse is difficult. Here, we present BenchStab, a console tool/Python package for easy and 
quick execution of 19 predictors and result collection on a list of mutants. Moreover, the tool is easily extensible with additional predictors. We 
created an independent dataset derived from the FireProtDB and evaluated 24 different prediction methods.
Availability and implementation: BenchStab is an open-source Python package available at https://github.com/loschmidt/BenchStab with a 
detailed README and example usage at https://loschmidt.chemi.muni.cz/benchstab. The BenchStab dataset is available on Zenodo: https://zen 
odo.org/records/10637728

1 Introduction
Protein stability is one of the key determinants of protein ap
plicability. Stable proteins can withstand harsh industrial 
conditions such as high temperatures, unfavorable pH, or the 
presence of denaturing agents. However, most proteins have 
evolved to function in relatively mild environments 
(Modarres et al. 2016). Therefore, there is a need to engineer 
proteins to meet the requirements of commercial applica
tions. The laborious and costly process of experimental meth
ods can be partially mitigated using predictive tools that 
provide fast and inexpensive solutions for mutation prioriti
zation. In recent years, the rise of machine-learning techni
ques and the availability of experimental data have led to a 
plethora of predictors of the effect of mutations on protein 
stability with varying accuracies, strengths, and weaknesses 
(Planas-Iglesias et al. 2021).

These predictors typically predict a change of Gibbs free 
energy (ΔΔG) or only classify mutations as stabilizing or 
destabilizing. Prediction may be based on structural informa
tion or sequence alone. We distinguish four basic modes of 
operations: (i) analysis of molecular interactions with force- 
field calculations (Yin et al. 2007), (ii) machine learning on 
structure-based features (Cheng et al. 2006), (iii) machine 
learning on features derived from a sequence (Folkman et al. 
2016) or using a language model (Umerenkov et al. 2023), 
and (iv) meta predictions combining multiple other models 

(Chen et al. 2013). Particularly the number of predictors of 
the third type has risen recently thanks to breakthroughs in 
structure prediction and large language models for bioinfor
matic data (Umerenkov et al. 2023). We can expect a further 
increase in the number of predictors with the emergence of 
very large mutational datasets collected in a high-throughput 
manner (Tsuboyama et al. 2023).

For a selection of the best tools for protein engineering and 
establishing new predictive methods, proper and independent 
benchmarking is crucial. However, the large number of exist
ing tools makes their comprehensive evaluation challenging. 
On the one hand, such evaluation can prove difficult due to 
the potential overlaps between training and test datasets, var
ious formats of the input data, and provided outputs. On the 
other hand, a majority of machine learning predictors are 
only available as web services with limited input size, variable 
waiting times, and occasional downtimes, thus making a 
large-scale analysis a troublesome task.

Here, we present BenchStab, a freely available Python 
package for the swift execution of calculations on web-based 
predictors and collection of results. Our package currently 
implements 19 web-based computational tools that we evalu
ated on the independent dataset (Veleck�y et al. 2024) derived 
from FireProtDB (Stourac et al. 2021).

BenchStab is fully modular, facilitating the integration of 
new web tools. We offer a straightforward solution for a fast 
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and effective benchmarking of well-established and future 
tools for predicting the effect of mutations on protein stabil
ity. BenchStab represents a significant step toward a compre
hensive evaluation of computational tools, identification of 
their limitations, and further advancement of the field of sta
bility prediction using machine learning. We believe that our 
tool will be particularly useful to the machine learning com
munity, as BenchStab may eliminate some barriers to entry 
into the competition of stability change prediction.

2 Implementation
We developed BenchStab as a Python library with a 
command-line interface, fully automating the process of sub
mitting requests to protein stability predictors and retrieving 
the results. The standalone application consists of multiple 
clients for distinct web-based predictors and allows adding 
new predictor clients through its framework, which com
prises two main modules: (i) input data preprocessing and (ii) 
predictor client implementations (Fig. 1). The predictors 
upon a point mutation may be both classifiers and regression 
tools. The robustness of our application is proven by an auto
mated test suite of 61 different unit tests. These tests also fa
cilitate future application extensions with new predictors or 
other improvements.

Every BenchStab run involves preprocessing the input data 
using the pandas library (McKinney 2010). The input con
tains the list of mutations defined within a single file that 
adheres to a fixed column structure. The application accepts 
common column separators (commas, semicolons, tabs, 
spaces). Each row may define the target protein by a Protein 
Data Bank (PDB) or UniProt accession code, PDB file, 
FASTA file, or raw sequence. Users can also define specific 
temperature and pH values as per-row optional parameters 
so the values are forwarded to predictors that support them. 
Then, the tool performs cascade data acquisition to query 
each predictor with its required input, e.g. by retrieving a se
quence for an entry specified by a PDB code for sequence- 
only tools. Where needed, SIFTS JSON API (Dana et al. 
2019) is employed to map a PDB chain to UniProt and alto
gether with RCSB API (Rose et al. 2021), a correct mutation 
position in the sequence is calculated addressing PDB arti
facts, such as insertion codes or expression tags. In the case 
of PDB files, the sequence is extracted directly from the file 
using Biopython. The integrity of submitted proteins, chains, 
and mutations is checked during preprocessing to ensure the 
predictors are not queried with faulty requests.

A client for a new predictor can be added using the adapt
able framework implemented in our tool by following the 
steps described in the README file. The framework sup
ports various protein data types, payload formats, authenti
cation, and job-waiting loops. Moreover, it leverages both 
aiohttp and asyncio libraries, enabling a non-blocking com
munication between a client and the corresponding predictor 
and parallel processing of the input data, both predictor-wise 
and entry-wise. Additionally, our tool provides users with a 
collection of global and per-predictor options through a con
figuration file described in the documentation.

3 Results
We implemented the clients for 19 web-based tools out of 28 
considered Supplementary Table S1. The remaining tools 
were not implemented due to (i) email-only results: STRUM 
(Quan et al. 2016), (ii) excessive job waiting times: 
ELASCPIC (Witvliet et al. 2016), (iii) malfunctioning predic
tion submission forms: EASE-MM (Folkman et al. 2016), (iv) 
server discontinuation: ENCoM, (Frappier et al. 2015), or (v) 
frequent outages and failures.

The sequence-based tools implemented in BenchStab are, 
with one exception, structure enabled. They offer two modes 
for prediction: from a sequence or a structure. In BenchStab, 
they are implemented as separate predictors, bringing the to
tal number of available predictors to 25 (Supplementary Fig. 
S1). BenchStab can be set to query only the sequence-based 
or structure-enabled predictors.

We tested the proper function of the predictors and their 
integration within the tool as a potential use case on a crafted 
dataset. Prediction gathering consisted of several rounds of 
predictor queries during which we adjusted client parameters 
per predictor: the status-check delays, number of concurrent 
queries, and error handling (to avoid causing a denial 
of service).

4 Use case
BenchStab can be utilized to benchmark the available predic
tors on a specific mutational dataset. To demonstrate this 
functionality, we created a new dataset based on FireProtDB, 
disjoint from the commonly used datasets. We present the 
results collected using BenchStab on this dataset.

We used only the records with both ΔΔG measurements 
and PDB accession codes. To prevent data leakage from 
training datasets, we eliminated records similar to the 

Figure 1. Three stages of the prediction acquisition process. The initial stage is the dataset preprocessing, validation, and enrichment. Every datapoint is 
then submitted to all selected predictors in the specific format unique to each tool. This is done asynchronously to minimize idling of the program as well 
as the user’s waiting since the responses can be handled immediately as they come (predictors without job queues) or awaited in a non-blocking loop 
(job-based predictors). Finally, the results are progressively merged as they are processed and periodically exported as a CSV file.
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proteins used in the training of the predictors as follows. 
First, we pooled all training datasets from the implemented 
predictors (Supplementary Table S2) to create a joint training 
set. Next, we assigned a UniRef50 cluster (Suzek et al. 2015) 
to each datapoint in both filtered FireProtDB and training set. 
Finally, with assigned clusters, we eliminated all datapoints 
assigned any UniRef50 cluster ID appearing in the training 
set too. The resulting dataset comprises 289 records for 36 
proteins (Veleck�y et al. 2024).

To check the structural heterogeneity of this dataset, we 
employed SCOP (Andreeva et al. 2014) for fold-based struc
ture clustering to discover that our dataset contains 25 
unique SCOP folds among the 36 proteins. Half of the folds 
were seen before by at least one of the predictors 
(Supplementary Table S3). Moreover, a distribution analysis 
shows that the dataset is not biased to a particular protein, 
an enzyme class, a particular structural element, or a conser
vation of mutated residues (Supplementary Fig. S2). 
However, the alanine-involving mutations make up half of 
the dataset, and many substitutions are not represented 
(Supplementary Fig. S3), which is a known problem for pro
tein stability datasets (Caldararu et al. 2020). We explored a 
possible remedy by deriving new datapoints using thermody
namic permutation (Diaz et al. 2024), but only two structures 
for mutants in our dataset were available in the PDB at the 
time of writing. Further statistics on the produced dataset are 
presented in Supplementary Tables S3 and S4 and 
Supplementary Fig. S4.

With the dataset, we benchmarked 24 predictors: 22 of the 
predictors implemented in BenchStab (Supplementary Table 
S1) and two standalone tools — FoldX versions 4 and 5 
(Schymkowitz et al. 2005) — providing a comparison with a 
popular standalone and force-field-based predictor. We did 
not include three of the implemented tools in the final results: 
sRide (Magyar et al. 2005), SDM (Worth et al. 2011), and 
PROSTATA (Umerenkov et al. 2023). The first does not pro
vide predictions for individual mutants, the second became 
unavailable during benchmarking, and the last used heteroge
neous training data including individual protein domains 
(Tsuboyama et al. 2023); creating a dataset robust to struc
tural leakage via domains to guarantee a fair evaluation was 

beyond the scope of this study. Supplementary Figure S1 
clarifies which tools were implemented and which were 
benchmarked.

The concise statistics of the results are shown in Fig. 2 for 
both regression and binary classification (informedness; 
Powers 2011). Our evaluation revealed that most of the tools 
can be more or less successfully used for mutation prioritiza
tion with balanced accuracy between 51% and 64%. On the 
other hand, the overall low predictive performance 
(Supplementary Figs S5 and S6) implied considerable room 
for improvement. Almost all the tools showed a particularly 
poor performance in the regression task, i.e. predicting the 
exact change in the protein stability (the worst and best R2 

equal to 0.01 and 0.15, respectively) with frequent both false 
positive and false negative errors (Supplementary Fig. S5). 
Furthermore, the vast majority of tested tools displayed a 
bias toward destabilizing predictions (Supplementary Fig. 
S8), also shown by mean signed deviation ranging from 
−0.79 to −0.11, as has been reported previously (Usmanova 
et al. 2018, Broom et al. 2020, Sanavia et al. 2020, Pucci 
et al. 2022). The abovementioned metrics, as well as root 
mean squared error, mean absolute error, accuracy, and 
Matthews or Pearson correlation coefficients, are reported 
for individual predictors in Supplementary Table S5. The 
structure-enabled tools did not perform much better than the 
sequence-only tools. In the case of precision-recall curves for 
binary classification, structure-enabled sequence-based pre
dictors performed worse when the structures were provided 
(Supplementary Fig. S7), as was observed in another recent 
study (Pancotti et al. 2022).

5 Conclusions
We presented BenchStab – a tool that facilitates the use of on
line stability-change predictors and streamlines the process of 
benchmarking a new predictor against established competi
tors. Protein engineers can use it directly on their proteins of 
interest with a tailored dataset to find the best-working pre
dictor in their use case. Our tool is validated by automated 
tests. On top of that, we investigated the robustness of our 

Figure 2. Performance of the predictors as measured on the BenchStab dataset. The tools are compared among themselves by these metrics: 
informedness, Pearson correlation coefficient, and R2. Informedness� (Powers 2011), a probability of an informed decision, is used to order the results. 
For the predictors with two input variants (structure and sequence), we selected the higher-scoring variant. �informedness [−1, 1] ¼ 2 × balanced 
accuracy − 1 ¼ recall þ inverse recall − 1 ¼ TP/P þ TN/N − 1 where TP, TN stands for true positives, true negatives, and T, F for all true, false cases, 
respectively.
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tool and of the underlying predictors on a newly created inde
pendent dataset.

As we can expect the discontinuation of some of the predic
tors in the future or breaking changes in their web interfaces, 
we released BenchStab as an open source to encourage quick 
updates from the scientific community. In the same way, our 
application could be extended to incorporate new predictors, 
including those for other protein properties, e.g. melting tem
perature or solubility.

We demonstrated the use case of the tool on a benchmark
ing task. The results revealed that hard cases for the current 
predictors exist, and therefore there is still a need for more 
precise tools. Structure-based tools did not beat their 
sequence-only counterparts. This finding seems consistent 
with a recent study (Pancotti et al. 2022) and may suggest 
that the structural information may not have been grasped 
optimally. We also reconfirmed the bias toward destabilizing 
predictions (Usmanova et al. 2018, Broom et al. 2020, 
Sanavia et al. 2020, Pucci et al. 2022). The dataset consists of 
proteins unseen by the benchmarked predictors before.

It is important to stress that the purpose of our dataset was 
to serve as test data and a use case for the BenchStab tool. 
Our dataset has several limitations, e.g. data from alanine- 
scanning experiments are overrepresented, which are often 
employed to identify residues crucially contributing to the 
protein stability (Caldararu et al. 2020), and several mutation 
types are not represented. Applying thermodynamic permuta
tion (Diaz et al. 2024) to recover some mutation types would 
have a limited effect due to the unavailability of structures 
needed to query most of the predictors. Therefore, a more ro
bust dataset is required for a comprehensive comparison of 
the predictors, which is beyond the scope of this study.

In conclusion, we believe BenchStab will motivate com
puter scientists to enter the domain of stability-change predic
tion by facilitating the comparison of their predictors to the 
state of the art.

Supplementary data
Supplementary data are available at Bioinformatics online.
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Large‑scale annotation of biochemically 
relevant pockets and tunnels in cognate 
enzyme–ligand complexes
O. Vavra1,2, J. Tyzack3, F. Haddadi1,2, J. Stourac1,2, J. Damborsky1,2, S. Mazurenko1,2*, J. M. Thornton3* and 
D. Bednar1,2* 

Abstract 

Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release 
of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a pow-
erful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures 
is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated struc-
tural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the cal-
culation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight 
distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming 
molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more 
than 17,000 cognate enzyme–ligand complexes. Analysis of ligand un/binding energetics indicates that the top prior-
ity tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed 
that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides 
essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic 
enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically 
relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.

Scientific contributions
The pipeline introduced in this work allows for the detailed analysis of a large set of protein–ligand complexes, focus-
ing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets 
for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding 
and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hot-
spots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material 
and can also be accessed at https://​github.​com/​Faran​ehhad/​Large-​Scale-​Pocket-​Tunnel-​Annot​ation.​git. The tunnel 
data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible 
at https://​chann​elsdb2.​bioda​ta.​ceitec.​cz/.
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Introduction
Enzymes are biological catalysts that can accelerate 
chemical reactions, which makes them essential for 
every living cell. These chemical reactions occur in the 
active site, which consists of residues with specific phys-
icochemical properties. Active sites can be found either 
in clefts on the surface of an enzyme or buried inside a 
cavity shielded from the outer environment. In the latter 
case, the active site cavity is connected with the surface 
by access tunnels to enable the passage of ligands, small 
molecules that interact with the enzyme [1]. This encom-
passes the exchange of reactant and product molecules 
or the binding of cofactors. The tunnels also impact the 
activity and specificity of the enzyme by restricting access 
to the active site for unfavourable molecules [2]. The 
introduction of mutations in protein tunnels and chan-
nels can affect activity, specificity, promiscuity, enanti-
oselectivity, and stability [3, 4].

Several computational tools were developed for the 
detection of important cavities and pockets, e.g., Fpocket 
[5], CASTp [6], and P2Rank [7]. These tools rank all the 
pockets found in a protein structure by their scoring 
functions and select the best potential binding pocket for 
the user. To improve the reliability of the selection, one 
can use annotations found in structure databases [8, 9]. 
Unfortunately, these annotations are available only for a 
limited number of enzymes. The selection of the func-
tionally relevant pocket is also crucial for the calculation 
of access tunnels. However, currently there is no tool 
available that would predict the suitability of a pocket for 
this purpose.

To identify tunnels in enzymes, one may use tools such 
as CAVER [10], MOLE [11] or MOLAXIS [12]. Similarly, 
with pocket calculation, these tools can detect multiple 
tunnels and also provide ways to rank them based on 
their geometrical properties. In many proteins with bur-
ied active sites, multiple tunnels can be identified, which 
makes it difficult to decide which tunnel is biochemically 
relevant. This crucial decision could be greatly supported 
by a large-scale analysis of protein structures. Previous 
efforts in this matter focused purely on finding tunnels in 
enzymes [13, 14]. While these studies proved that tunnels 
appear in all enzyme classes, they did not define how to 
recognise biochemically relevant tunnels.

The classical computational approach to studying the 
biological relevance of tunnels is to simulate the inter-
actions between a protein and a ligand with methods 
based on molecular dynamics [15]. Unfortunately, this 
time-demanding type of simulation is not feasible for 
large datasets. More recent tools, such as CaverDock 
[16], GPathFinder [17], or ART-RRT [18], employ vari-
ous approximations to simulate ligand transport in 

short computational times and provide valuable infor-
mation about the energy profile of the process. These 
tools are gaining popularity [19] and have successfully 
been used for screening and identifying novel drugs 
[20, 21] and engineering proteins [22–26].

In this study, we present a novel strategy for annotat-
ing pocket relevance for tunnel calculation and assign 
biochemical relevance of tunnels based on ligand trans-
port and binding energies. With the growing number 
of available protein structures [27] and models [28], 
automatic annotation of binding pockets and tunnels 
without the dependency on residue annotations would 
be of great use. Based on the premise that substrate 
and product molecules are present in relevant pockets 
in enzyme structures, we created a dataset independ-
ent of annotations. We selected experimentally derived 
enzyme structures with bound molecules that were 
similar to cognate ligands, i.e., ligands that potentially 
bind or react with a given enzyme. For this purpose, we 
used a previously published dataset of enzyme cognate 
ligand pairs [29–31], which we updated and utilized for 
structural analyses of pockets and tunnels in this study. 
We then developed a pipeline combining machine 
learning, the geometrical analysis of tunnels, and the 
energy profiling of transported ligands. The pipeline 
was then validated against molecular dynamics simula-
tions and applied to the large-scale dataset with more 
than 17,000 protein structures.

Methods
The study used data collected from the publication by 
Tyzack et al. [31] and updated it for the purposes of our 
study. After filtering the original dataset, we analysed 
17,092 unique protein–ligand pairs (Table  1) The data 
consists of enzyme–ligand complexes ranked by the 
similarity of the bound ligand with the cognate ligand 
from the KEGG [32] database calculated by the PAR-
ITY algorithm [31]. To process the data, we designed an 
automatic pipeline which consists of three parts (Fig. 1): 
(i) automatic annotation of enzyme–cognate ligand com-
plexes by computational tools (ii) classification of the 
main binding pocket of the enzyme to buried or surface 
pocket by machine learning (ML) predictor, and (iii) the 
energetical analysis of ligand un/binding by CaverDock 
(Fig.  1). Each part of the pipeline was separately tested 
and validated. The data provided from all three parts 
were combined and analysed in the later part of the study. 
Here we provide a summary of the methodology behind 
the pipeline. The detailed description of each step with 
used parameters is part of the supplementary material.
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Automatic annotation
At the beginning of the pipeline, the biological unit is 
collected for each enzyme in the dataset [27]. The struc-
tures were processed to remove all ligand molecules, 
while known cofactors [5, 33] were kept in the structure. 

Next, we calculated pockets in the structure with Fpocket 
2 [5] and selected the main pocket based on the loca-
tion of the bound ligand structurally related to the cog-
nate ligand of the enzyme. The selected pocket was used 
to define the starting point for tunnel detection using 

Table 1  The summary of the pipeline proposed in this study and the dataset sizes at various stages of the pipeline execution

Pipeline Items Number of cases

1. Automatic annotation Protein–ligand pairs 35,882

Unique PDBs 17,092

Ligand missing in the biological unit 193

Ligand not present in PDB 133

Ligand not present in any pocket 1058

Pocket calculation errors 337

Successfully calculated pockets 15,697

Proteins with annotation in CSA and Uniprot 11,046

Proteins without annotation 4651

Selected pockets with matching annotated residues 8350

No matching residues in the selected pocket 2696

No tunnels found by Caver 526

Tunnel calculation errors 739

Successfully calculated tunnels 14,432

2. Machine Learning predictor for pocket annota-
tion

Buried pockets without tunnels 508

Borderline pockets without tunnels 160

Surface pockets without tunnels 597

Buried pockets with calculated tunnels 3552

Borderline pockets with calculated tunnels 3178

Surface pockets with calculated tunnels 7702

3. Energy profiles Protein–ligand pairs for CaverDock calculations 14,432

Unfinished CaverDock calculations 1274

Successfully completed CaverDock jobs 13,158

Successfully calculated energy profiles 29,693

Fig. 1  The overview of the pipeline developed in this study. The pipeline consists of three steps: (i) automatic annotation of enzyme–cognate 
ligand complexes with computational tools, (ii) classification of ligand binding pocket by machine learning (ML) predictor, and (iii) analysis of ligand 
transport through enzyme tunnels with CaverDock
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CAVER 3.02 [10]. The automatic annotation part of the 
pipeline was validated in two ways. First, we collected 
annotations from Swiss-Prot, UniProtKB [8], and CSA 
[9], together with Fpocket and druggability scores cal-
culated for all pockets by Fpocket 2. This data was used 
to observe whether the selected main pocket contained 
annotated residues important for the function of the 
enzyme and to analyse if the main pocket had the best-
predicted scores. Second, we studied the impact of the 
ligand presence in protein structures to determine the 
changes in tunnel properties. By using the REST API in 
PDBe [27] and RCSB [34], we collected 2904 pairs of pro-
tein–ligand complexes and ligand-free structures. In the 
next step, we aligned the structures with DeepAlign [35] 
and calculated tunnels in each pair of structures. Finally, 
we analysed the changes and differences to determine the 
properties of potentially relevant tunnels.

Machine‑learning predictor for pocket distinction
The main goal of this part of the pipeline was to cre-
ate a predictor which would be able to assess and dif-
ferentiate between buried and surface-exposed protein 
pockets. For the training of the predictor, we manually 
labelled 200 pockets. We analyzed the distribution of 
the Enzyme Commission (EC) classes in the dataset and 
randomly collected samples in quantities that matched 
the EC class distribution. Features were extracted from 
Fpocket 2 output, and an additional “Exposed ratio” 
feature was included, representing the number of sol-
vent-accessible residues. In total, 20 features were used 
(Table  S1). Pockets were categorized into three classes: 
buried, borderline, and surface, based on manual inspec-
tion. The following software was used for the training of 
the predictor: Python 3.9.7, NumPy 1.26.2, Pandas 1.4.3, 
Scikit-learn 1.1.1. We tested the Support Vector Machine 
(SVM), K-Nearest Neighbour (KNN), Shallow Neural 
Network (ANN), Gaussian Naive Bayes, and Random 
Forest as classifiers. In each case, we applied a grid search 
with five-fold cross-validation for tuning hyperparam-
eters of the algorithms (Table  S2) and conducted data 
preprocessing, including Kolmogorov–Smirnov feature 
filtering [36]. The performance was evaluated using accu-
racy, precision, recall, FPR, and F1 measures because the 
dataset was balanced. For validation, we employed an 
independent test set of additional 100 manually labelled 
samples, mirroring the class distribution of the training 
set (Table S3). The best predictor was then used to clas-
sify all calculated pockets.

CaverDock energy analysis
CaverDock 1.1 [37] was used to analyse the ligand path-
ways in all cases in the dataset with successfully cal-
culated tunnels. CaverDock is a tool designed for rapid 

analysis of ligand transport. It enables fast simulation of 
the binding and unbinding of ligand molecules through 
protein tunnels. CaverDock achieves short calculation 
times which makes it well-suited for virtual screening 
applications. The current version of CaverDock uses 
CAVER 3.02 for the pathway identification and Auto-
Dock Vina 1.1.2 as the docking engine, applying its dock-
ing algorithm and empirical scoring function without any 
modifications. Each CaverDock calculation requires the 
receptor, ligand, and tunnel input files and the configura-
tion. The tunnel is discretized into a set of discs which 
are used to guide the ligand through the protein during 
the simulation. To produce the trajectories for the study, 
we used the lower-bound CaverDock calculations. In 
each step of the CaverDock lower-bound trajectories, 
the ligand is constrained to a disc, and the docking algo-
rithm docks the molecule to the disc and optimises the 
conformation. Apart from the selected drag atom which 
is constrained to the disc (Table S4), the rest of the mol-
ecule can move freely. Then the ligand is moved to the 
next disc and the process is repeated until the molecule 
reaches the end of the tunnel. The outputs are the ligand 
trajectory and the energetic profile of the un/binding 
process.

The information from the relevant cognate KEGG 
[32] reaction was used to collect the cognate ligand and 
to set the drag atom used to guide the molecule during 
the simulation by processing the information with Reac-
tion Decoder Tool [38] and RDKit (https://​github.​com/​
rdkit/​rdkit). The processed ligand and enzyme structure 
files were then converted to PDBQT using the scripts 
from MGLtools 1.5.6 [39]. The tunnel 3D representa-
tions in PDB format were discretized into a set of discs 
using the Discretizer tool from the CaverDock package. 
Finally, the grid box around the tunnel and the configura-
tion file were prepared by the prepare-config script from 
the CaverDock package. The direction of the simulation 
was defined based on the type of the ligand, binding for 
substrates and unbinding for products. Only the lower-
bound trajectory was calculated and analysed. Important 
energy values were extracted from the energy profiles 
manually for the validation dataset and automatically 
in the annotation pipeline: EBound, EMax, and ESurface. The 
energy barriers were calculated as Ea = EMax − EBound for 
the products and Ea = EMax − ESurface for the reactants.

The CaverDock tool has been tested extensively and 
used on various datasets in previous publications [20, 21]. 
However, validation of the quality of predicted trajecto-
ries from CaverDock has not been done by any method 
approaches based on Molecular Dynamics (MD). We val-
idated CaverDock by running classical MD simulations 
and Adaptive Steered Molecular Dynamics (ASMD) 
[40]. In contrast with unbiased MD, the ASMD method 

https://github.com/rdkit/rdkit
https://github.com/rdkit/rdkit
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applies constant external force on two atoms in the sim-
ulated systems. This can be used to simulate unbinding 
or binding ligands through tunnels. The direction of the 
movement is set by selecting the steering atoms to move 
the ligand in the direction of a selected tunnel by length-
ening or shortening the distance for unbinding or bind-
ing respectively. While changing the distance between 
those two atoms, the ligand moves in the given direction, 
but it can follow the curves of the tunnel which allows 
it to move through the protein. The steering atoms or 
the direction are not changed during the simulation. In 
ASMD, the simulation is divided into multiple stages. 
During each stage, the steered simulation is performed in 
several parallel replicas, and the Jarzynski average [41] is 
calculated at the end of that stage. The simulation then 
proceeds by selecting the single trajectory with a work 
value closest to the Jarzynski average. The next stage 
continues from the selected trajectory. The Potential of 
Mean Force (PMF) is calculated at each stage, and at the 
end of the ASMD simulation, the segments of the PMF 
are combined to form the complete PMF. For the valida-
tion, we selected eight cases from the dataset with pro-
tein structures which had 2–4 well-defined tunnels and 
the cognate product bound inside (Table S4). To prepare 
the complexes for the validation unbinding simulations, 
we selected the lowest-energy binding pose from the 
CaverDock analysis of the first tunnel, extracted the pose, 
and saved it in the protein structure. The complexes were 
then processed by several tools, minimised, and equili-
brated before running the MD simulations with AMBER 
16 [42–51].

Before we started with the biased unbinding simula-
tions, we ran classical MD simulations of System #3 and 
System #4 (Table 2) to showcase the need for biased MD 
simulations [15, 52] and approximative methods for the 

study of ligand unbinding [19]. We used the prepared 
complexes and ran 3 replicas of 1  µs simulations to 
study the behaviour of the complexes and the potential 
unbinding of the ligand molecules. Next, the unbinding 
trajectories were calculated with ASMD. The follow-
ing parameters were used: 25 parallel simulations, 2 Å 
stages, a velocity of 10 Å/ns, and a force of 7.2 N. The 
protein atom for the steering was different for each tun-
nel. The ligand atom for steering was selected as the one 
closest to the centroid of the molecule. Lastly, we ran 
MD simulations with ligand-free structures to gener-
ate ensembles of protein snapshots to study how much 
CaverDock results change when using dynamic struc-
tures. We used the same settings for the preparation 
of the systems, minimisation, and equilibration. We 
ran 50  ns of production MD, saved 25,000 snapshots, 
and from these we collected 100 snapshots covering 
the entire MD simulation. We calculated the tunnels in 
selected snapshots using CAVER and the transport of 
ligands through the snapshots with CaverDock. Then, 
we collected and averaged the energy values for each 
snapshot and tunnel in every system. Finally, the Poten-
tial of Mean Force profiles from ASMD and CaverDock 
energy profiles from a single static structure and aver-
aged values were compared. We qualitatively analyzed 
the results by comparing the order of the calculated 
profiles based on their maximum energy for each tun-
nel and the number of matching profiles between the 
two methods (e.g. if the profile for a tunnel is the first 
one by  ASMD and in CaverDock it is considered as a 
match). We are aware that both MDs and CaverDock 
use different methods for both parametrisation and 
evaluation of the transport energy. Our main aim was 
the qualitative comparison to see if the molecules could 
unbind through the selected tunnels.

Table 2  The comparison of Potential of Mean Force profiles obtained from ASMD simulations and energy profiles from single 
structure or averaged CaverDock calculations over snapshots from MD simulations

Case Enzyme Ligand Number 
of tunnels

Match 
with static 
CaverDock

Match with 
averaged 
CaverDock

System #1 (PDB ID 1OTW) Pyrroloquinoline–quinone synthase Pyrrolo-quinoline quinone 3 1 out of 3 1 out of 3

System #2 (PDB ID 2BFN) Haloalkane dehalogenase LinB trans-3-Chloro-2-propene-1-ol 3 3 out of 3 3 out of 3

System #3 (PDB ID 2RFY) Cellobiohydrolase Cellobiose 3 0 out of 3 1 out of 3

System #4 (PDB ID 2UWH) Cytochrome P450 BM3 11,14,15-Trihydroxyicosatrienoic acid 3 2 out of 3 3 out of 3

System #5 (PDB ID 4E2Z) C-3′-methyltransferase Se-adenosyl-l-selenohomocysteine 3 3 out of 3 3 out of 3

System #6 (PDB ID 5EDT) Cytochrome P450 CYP121 (4S)-4-(5,5-Dimethylcyclohex-1-en-
1-yl) cyclohex-1-ene-1-carboxylate

4 0 out of 4 0 out of 4

System #7 (PDB ID 3ORW) Phosphotriesterase N-(6-Aminohexanoyl)-6-aminohex-
anoate

2 2 out of 2 2 out of 2

System #8 (PDB ID 5U6M) UDP-glucosyltransferase Uridine 5′-diphosphate 3 3 out of 3 3 out of 3
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Results
Automatic annotation
Annotation of the filtered PROCOGNATE dataset
The summary of the filtering of the PROCOGNATE 
dataset is given in Table  1. Out of the 17,092 unique 
PDBs, the ligand was not present in the biological unit in 
193 cases, so we had to use the asymmetric unit instead. 
In 133 cases, the ligand was not present in the PDB at 
all—when three-letter codes for ligands did not match 
the bound ligand code in the dataset. In 1058 cases, 
the ligand was not inside any of the calculated pock-
ets but rather at or near the protein surface, therefore 
it was impossible to define any pocket which contained 
the ligand. In 337 cases, there were errors in the pocket 
calculation and the tool failed to predict any pockets. 
We looked at the representation of the enzyme classes 
defined by their catalysed reaction and classification by 
the EC numbers in the 15,697 cases with successfully cal-
culated pockets, and all EC classes were represented in 
the dataset: EC 1 (25.1%), EC 2 (38.5%), EC 3 (20.4%), EC 
4 (7.7%), EC 5 (4.3%), EC 6 (3.6%) and EC 7 (0.4%). Con-
cerning the tunnel detection, no tunnels were found in 
526 cases, and 739 cases finished with errors. This could 
stem from the following: (i) the pocket was at the surface 
of the protein and the CAVER algorithm was unable to 
calculate any tunnels, (ii) the automatically set starting 
point was in an incorrect position, or (iii) the space was 
too narrow for the 0.9  Å probe during the calculation, 
and the tunnel calculation failed.

Validation of annotations
The twofold validation was used to evaluate the usabil-
ity of the proposed pipeline. We analysed the collected 
annotations for residues essential for function, i.e., cata-
lytic or binding residues, in selected binding pockets. By 
searching UniProt and CSA, we managed to find anno-
tations for 11,046 protein structures, and for 4651 struc-
tures, we found no information on essential residues 
(Table  1). Out of 11,046 annotated cases, 76% matched 
the essential residues with the pocket-lining residues.

We further investigated the impact of the selection 
of the studied pocket on the performance of the pipe-
line. Using the ligand coverage, i.e., the fraction of the 
molecule overlapping with a pocket, we discriminated 
between three scenarios: (i) the ligand belonged only in 
one pocket (single pocket), (ii) a part of the ligand was 
found in another pocket, but the ligand was occupying 
the main pocket by 10% more than other pockets, (iii) 
the ligand occupied multiple pockets, and the difference 
was less than 10%. In the third scenario, e.g., when half 
of a ligand was inside one pocket, and the second part lay 
in another (Figure S1), we selected the pocket with the 

highest druggability score. To this end, we looked at how 
often the selected pocket has the best Fpocket and drug-
gability scores in the matching/mismatching/no anno-
tations subsets (Table S5). In these subsets, the selected 
ligand-binding pocket was top-ranked by Fpocket scores 
only in 43%, 27%, and 41% of the cases. In the case of 
druggability scores, it was 23%, 12%, and 17%, respec-
tively. These values were surprisingly low, implying that 
selecting the pocket based on calculated scores would 
lead to a high number of errors. On the other hand, 
based on the 75% overlap of the selected pockets with 
annotated essential residues in structural databases, we 
can say that the approach of selecting the pocket based 
on the ligand location is significantly better than a blind 
selection of the best pockets ranked by Fpocket score or 
druggability. Furthermore, using the same settings for the 
Fpocket calculation for all proteins in the dataset seems 
insufficient as it led to cases where the ligand overlapped 
with multiple pockets. In addition, selecting the pocket 
by predicted scores is not generally applicable to any 
ligand-free structure without available essential residue 
annotations. A solution could be to extrapolate the loca-
tion of the ligand and selected pocket from structurally 
similar proteins.

In the second part of the validation, we analysed how 
the presence of a ligand impacted the geometry of tun-
nels in proteins in pairs of ligand-bound and ligand-free 
structures to analyse the potential effect of induced fit in 
the structures. We used the priority score in CAVER 3.02 
to calculate how many out of the top 5 tunnels identified 
in ligand-bound structures could also be found in the top 
5 tunnels of ligand-free structures (Fig. 2A). In the 2904 
studied pairs, we found no common tunnels in 24% of the 
cases. This could be caused by the absence of the ligand 
in the structure, which led to a narrower binding site and 
impacted the geometry of calculated tunnels. In this cat-
egory, no tunnels were found in the ligand-free structure 
in 146 cases, and only one tunnel, which did not match 
with any of the tunnels from ligand-bound structures, 
was found in 139 cases. In the rest of the structures, 
35% had one common tunnel. Based on the results, we 
observed that it was generally rare for a protein to have 
more than three potentially biologically relevant tunnels. 
We collected the priority scores for each of the five ranks 
of common tunnels and calculated the probability distri-
bution to further study the clusters and define a metric 
for potentially relevant tunnels (Fig.  2B). We concluded 
that the tunnels with the priority above 0.55, the aver-
age priority score of the third tunnel, could be potentially 
relevant, with geometrical properties suitable for ligand 
un/binding. We suggest that for screening purposes, 
users should focus only on the first three tunnels calcu-
lated by CAVER 3.02 or use more tunnels with a priority 
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score above 0.55. This recommendation is aimed only at 
the cases in which there is no previous information about 
the relevancy of tunnels in the studied protein. Based on 
these findings, we focused only on the first three tunnels 
in our subsequent data analyses.

Machine‑learning predictor for pocket discrimination
Since tunnel calculations are of little use for the surface 
binding pockets in the annotation pipeline, we trained 
a machine-learning predictor for identification  of such 
pockets. We used KNN, Random Forest, SVM, ANN, and 
Naïve Bayes to discriminate between buried and surface 
binding pockets. We tested two annotation strategies: a 

three-class problem (buried, borderline, surface) and a 
two-class problem in which the buried and borderline 
classes were merged into one (Table S6, Figure S2).

The Naïve Bayesian predictor was used as a simple 
baseline, and while it showed the highest value of 1-FPR 
of 90% and 93% on the training dataset for three- and 
two-class problems, respectively, it failed to identify any 
buried samples in the test dataset. For the three-class 
problem, the ANN achieved the highest accuracy (54%) 
and F1 score (50%), and the second-highest 1-FPR score 
(67%) on the test set.  ANN was also among the top-
performing models for the two-class prediction, with all 
three metrics of 70% on the test set. Despite featuring 

Fig. 2  Analysis of tunnels in pairs of ligand-bound and ligand-free structures and the entire annotated dataset. A The number of common 
tunnels found in both ligand-bound and ligand-free structures. B Probability of distribution of CAVER priority score for the best five clusters in pairs 
of structures. C Distribution of the priority score for the first three tunnels in all proteins from the dataset with calculated tunnels. The analyses show 
that the first three tunnels are commonly present in enzyme–ligand complexes and ligand-free structures. These tunnels have the best geometrical 
parameters and are suitable for ligand un/binding. Tunnels with the priority above 0.55 could be potentially biologically relevant
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lower absolute values, the three-class prediction results 
were similar to those for a two-class predictor if the base-
line accuracy of a completely random prediction was 
taken into account (33% vs. 50%). Therefore, we selected 
the ANN-based three-class predictor to annotate the 
successfully calculated pockets (Table 1).

To get a better understanding of our results, we con-
ducted several additional analyses. Since KNN achieved 
the highest 1-FPR score on the three-class dataset and 
performed similarly to ANN on the two-class dataset, we 
further examined whether the misclassified cases differed 
between the two models. There was almost no overlap in 
misclassifications in the three-class dataset, except for 
a few cases (i.e., 8 buried pockets classified as surface) 
in the test set. Moreover, while both predictors showed 
low performance in borderline cases and similar perfor-
mance in buried cases, the ANN predicted most surface 
pockets correctly. Furthermore, in addition to evaluating 
our predictors on the test set, we also constructed learn-
ing curves to determine whether expanding the training 
set (beyond 160 training data points  in each  fold) could 
enhance the performance of the predictors (Figure S3). 
However, the curves did not provide any evidence that 
the accuracy would increase if more data points were 
added for training. Finally, the feature pre-selection based 
on the two-sample Kolmogorov–Smirnov test did not 
improve the results, so we used the entire set of features 
in our final predictor. The python code for the pocket dis-
crimination predictor is available at https://​github.​com/​
Faran​ehhad/​Large-​Scale-​Pocket-​Tunnel-​Annot​ation.​git 
and as a part of the supplementary material.

CaverDock energy analysis
CaverDock annotation results
We analysed 14,432 proteins with calculated tunnels with 
CaverDock. We were not able to produce ligand trajec-
tories for 1244 protein–ligand systems (Table  1) due to 
several factors: (i) we had problems with the automatic 
parsing of ligand data from KEGG, (ii) protein structures 
contained parts of DNA or RNA which caused the recep-
tor preparation to fail, (iii) we failed to discretize the tun-
nels for CaverDock because they were extremely short, 
represented by only one dummy sphere or one sphere 
encompassed by another, or (iv) we discarded the cases 
in which the lower-bound CaverDock calculation did not 
finish within 48  h on 4 CPUs. Based on the tunnel pri-
ority distribution, we analysed the energies of ligand un/
binding in up to three tunnels found in each protein. In 
13,188 successfully calculated protein–ligand systems, we 
produced 29,752 energy profiles: 12,804 trajectories for 
the tunnel 1, 9465 for the tunnel 2, and 7483 for the tun-
nel 3.

MD simulations for validation of CaverDock trajectories
Both unbiased and biased MD simulations were used to 
validate the quality of CaverDock results. We simulated 
three replicas of 1  µs unbiased MD simulations for cel-
lobiohydrolase with cellobiose and cytochrome P450 
BM3 with 11,14,15-trihydroxyicosatrienoic acid (System 
#3 and #4 in Table 2, respectively). The ligand remained 
in the binding site, and we did not observe unbinding in 
any replicas. This result showed the importance of apply-
ing bias in MD to study events such as ligand unbinding. 
Furthermore, it demonstrated the applicability of approx-
imative methods for the simulation of un/binding to save 
computational time and effort since unbinding was not 
observed even in these long simulations. We qualitatively 
compared the match between the Potential of Mean 
Force profiles (PMF) from ASMD and CaverDock calcu-
lations. We used the CaverDock trajectories from the sin-
gle static structure and the averaged CaverDock results 
from 50 ns MD snapshots (Table 2). We show the high-
est energy value in the profile EMax for the static and the 
averaged CaverDock calculations in Table S7.

In the case of System #1 (Figure S4), the energies for 
tunnels 1 and 2 were similar, but the order was swapped 
compared to the ASMD simulations. Both tunnels were 
not frequently open in the 100 snapshots (Table  S7). 
Moreover, the priority of tunnel 1 was lower in MD 
snapshots, so both tunnels 1 and 2 seem to be feasible 
for ligand binding. The ligand was not able to unbind 
through tunnel 3 in ASMD simulations, which agrees 
with the large barrier found in CaverDock energy pro-
files. System #2 had a match for all three tunnels (Fig. 3). 
In ASMD the ligand was able to unbind with difficul-
ties in tunnel 3, but the force started to unfold the part 
of the protein that was used for steering the simulation. 
This result is in accord with the large CaverDock barri-
ers. In System #3, there was no matches between ASMD 
and CaverDock results for the static structure (Figure 
S5). The use of averaged results from MD snapshots 
improved the results, as the energy profile for the tunnel 
2 was the highest. We concluded that the loops around 
tunnel 2 made it too wide open in the static structure and 
biased the results. The ligand in System #4 unbound suc-
cessfully in both tunnels 1 and 2 (Figure S6). On the other 
hand, it did not unbind through tunnel 3 and remained 
stuck in the binding site. Therefore, we deduced that 
both tunnel 1 and 2 could be preferred by the ligand. 
In System #5, there was no unbinding observed in tun-
nels 2 and 3 (Figure S7). The results from all the simu-
lations agreed. The inability to pass through the tunnels 
in ASMD was reflected in the barriers in both types of 
simulations. System #6 had no matches between Caver-
Dock and ASMD, and the use of averaged energies from 
snapshots did not improve the results (Figure S8). The 

https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git
https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git
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crystal structure seemed too compact and presumably 
did not have enough time to open during the short MD 
simulation of the complex. In System #7, the ligand was 
able to unbind successfully through tunnel 1 but was not 
able to pass through tunnel 2 (Figure S9). CaverDock 
results agreed with ASMD, so we had a good match 
across all simulations. In the case of System #8, the ligand 
preferred tunnel 1 over tunnel 2 and was not able to pass 
through tunnel 3 (Figure S10). Static CaverDock showed 
similar energies for both tunnels 1 and 2, and the results 
were improved in MD snapshots, where we saw a slightly 
higher barrier in tunnel 2. It indicated that both tunnels 
1 and 2 could be used by the ligand. Regarding this vali-
dation dataset, we observed that some profiles both from 

PMF and CaverDock were too high in comparison with 
the other profiles, e.g., System #5 and System #6, suggest-
ing the low probability of these tunnels being used for 
ligand transport. The RMSD values for 50 ns MD simula-
tions without ligand and ASMD simulations with ligands 
are listed in Table S11.

Data analysis
The ANN predictor was used to discriminate the pockets 
based on their type for all cases within the dataset. In the 
case of the pockets for which we did not manage to calcu-
late tunnels, 508 pockets were predicted as buried, 160 as 
borderline, and 597 as surface. This was a surprising find-
ing since we expected all these pockets to be predicted as 

Fig. 3  Results from CaverDock validation for haloalkane dehalogenase LinB with trans-3-chloro-2-propene-1-ol. A Visualisation of the protein 
structure (PDB ID 2BFN) with analysed tunnels showed as spheres: tunnel 1 (blue), tunnel 2 (green), tunnel 3 (red). B Potential of mean force 
profiles from ASMD simulations. C Energy profiles from static CaverDock calculations. D Averaged CaverDock energy profiles from 50 ns simulation 
snapshots. The third tunnel was not present in the MD snapshots. The System #2 showed qualitative agreement between the ASMD and CaverDock 
results
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surface pockets. In the second part of the dataset, i.e., the 
cases with pockets and successfully calculated tunnels, 
3552 cases were predicted as buried pockets, 3178 as 
borderline, and 7702 as surface (Table 1). In the subset of 
proteins for which we were able to identify pockets and 
tunnels, we coupled the predictions with the information 
about tunnels (Table S8). We binned tunnels similarly as 
in the study of Pravda et al. [13]: short tunnels under 5 Å, 
medium-length tunnels between 5 and 15  Å, and long 
tunnels over 15 Å. In tunnel 1, we see a significant over-
lap between the categories of pockets with correspond-
ing tunnel lengths. The vast majority of tunnels (75%) 
in buried cases were either medium or long. Borderline 
cases were defined as a separate category because dur-
ing manual annotation, it was difficult to assess if pockets 
were completely open on the surface or partially buried. 
For this category, we had 41% short, 49% medium, and 
10% long tunnels. For the surface cases, 74% were short 
tunnels. Thus, our predictor proved successful in its 
predictions for tunnel 1 and could be a useful tool for 
assessing whether the calculation of tunnels in a protein 
makes sense or there is just a surface cavity. We carried 
out a similar analysis for tunnels 2 and 3, but these tun-
nels were of lower priority and always longer than tunnel 
1. Therefore, almost all the tunnels were either medium 
or long. Based on this result, we defined tunnel 1 as the 
only reliable descriptor of the relationship between the 
predicted pocket type and tunnel length. Moreover, the 
proteins with tunnels shorter than 5 Å could potentially 
be discarded since they were calculated for pockets pre-
dicted as surface pockets and were, therefore, irrelevant 
to the tunnel analysis. The main benefit of the predictor is 
the possibility of pocket annotation in enzyme structures 
with very narrow tunnels, which would not be found 
unless the user used a smaller probe during the calcula-
tion, or when the tunnel calculation fails. One could also 
use the predictions to decide whether calculating and 
analysing tunnels is worthwhile for a particular protein 
structure. Since the predictor does not require the pres-
ence of a ligand in the structure, it is also generally appli-
cable for ligand-free structures.

We studied the geometry of the first three tunnels in 
more detail. The distribution of tunnel priority scores 
for all cases with calculated tunnels is presented in 
Fig. 2C. Importantly, we observed the same trend in the 
priority scores as in the analysis of pairs of complex and 
ligand-free structures. The throughput of tunnels 2 and 
3 was lower because they were narrower, longer, and 
more curved than the tunnel 1 (Figure S11). This is not 
surprising since the priority score is related to the geo-
metrical tunnel properties. Therefore, the priority score 
should be a sufficient metric for screening purposes. 
We continued this analysis by separating the dataset 

based on EC numbers (Figure S12). Tunnels were pre-
sent in proteins from all EC classes, which was in 
agreement with previous studies [13]. The tunnel prior-
ity followed the same trend in all the classes apart from 
EC 7 due to the low number of cases in the dataset. 
We did not observe any major differences in the geo-
metrical properties, which would otherwise indicate 
that certain EC classes preferred tunnels with specific 
geometries. We also studied the number of tunnels in 
each EC class with a priority higher than 0.55 (defined 
in the analysis of pairs of structures). Apart from EC 7, 
the results were similar for all EC classes (Figure S13). 
For future tunnel analyses, it might be worthwhile to 
compare subclasses to see more significant differences 
in tunnel geometries.

Next, we studied whether the geometrical bottleneck, 
i.e., the narrowest part of a tunnel, was the best hot spot 
for mutagenesis to improve ligand binding and selectivity. 
For this purpose, we collected the maximum energy EMax 
from each CaverDock trajectory. In the next step, we 
compared the location of the energy maximum and the 
geometrical bottleneck in the tunnel (Fig. 4). We tracked 
how often the maximum energy was in the disc with the 
lowest radius or in its vicinity (1.5 Å, 3 Å, and 5 Å). The 
match between the energy and geometry bottleneck was 
around 50% for the exact disc and 75% for the 5 Å vicin-
ity (Table  S9). The mismatch showed that studying the 
geometry of the tunnel is a good starting point for quan-
tifying the likelihood of a tunnel being used for ligand 
transport. Furthermore, the analysis of the energy pro-
files by approximative methods can be the source of valu-
able information and help with the identification of other 
important hot spots for the study and the modification of 
the ligand transport. The analysis was run with cognate 
ligands; therefore, these molecules should be recogniz-
able by the enzymes. The results might change for a set of 
ligands of a larger size or with physicochemical proper-
ties different from the cognate ligands.

CaverDock energy profiles were used to analyse the 
ligand preference of tunnels based on the energy barri-
ers. We compared the maximum energies in up to the 
three tunnels and selected the best one. The first third of 
the profiles was removed in order not to include peaks 
of energy at the beginning of the profiles caused by 
clashes at the bottom of the tunnel. In the 13,158 pro-
teins with successful CaverDock calculations, tunnel 1 
had the most favourable energy in 75% of the cases and 
tunnel 2 in another 19% of the cases (Table S10). There-
fore, for screening purposes, the analysis of tunnel 1 (or 
at most tunnel 2) would be enough for more than 93% 
of proteins. Based on these results, tunnel 1 had the best 
properties for ligand un/binding and would be the most 
biochemically relevant.
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Finally, we studied how well the cognate ligands were 
recognised by their receptors. We analysed the distri-
bution of energy maxima (Figure S14) and the energy 
barrier (Figure S15). In the case of tunnel 1, which was 
the most preferred tunnel for ligand un/binding, almost 
80% of the EMax values were in the range between 
− 10 kcal/mol to 5 kcal/mol, and the energy barriers Ea 
were in the range between 0 kcal/mol and 10 kcal/mol. 
Both values were highly correlated for cognate ligands, 
and the Pearson’s correlation coefficient was 0.98 for 
energies from all three tunnels. Using EMax seems to 
be equivalent to Ea for cognate ligands and probably 
for other natural substrates, which should be trans-
ported reasonably fast and bound in the active site. 
For inhibitors, both values could have different mean-
ings as the molecule does not need to pass the entire 
way to the active site, but the binding affinity must be 
much stronger. In such cases, we recommend using 
EMax values as they are easier to collect and interpret. 
We analysed the data split by pocket classes, EC num-
bers, and cognate ligand similarity. Still, all the datasets 
showed similar trends without major differences (data 
not shown), implying that ligand trajectories are case-
specific rather than showing some general trends in dif-
ferent groups of enzymes.

Discussion and conclusions
We describe the development of an automatic pipeline 
for the analysis of pockets and tunnels in enzymes and its 
application to study enzyme–cognate ligand complexes. 
The results provided a way to select potentially biologi-
cally relevant tunnels. The proposed approach can be 
used for extending large protein datasets for structural 
analyses and screenings. We analysed more than 17,000 
cognate enzyme–ligand complexes. We were able to 
successfully annotate and analyse structural features 
and the energetics of ligand passage through tunnels in 
13,158 enzyme structures. The tunnel data collected in 
this study has been made publicly available as part of the 
ChannelsDB 2.0 database [14]. Each part of the pipeline 
was thoroughly validated, and the data showed that bind-
ing pockets selected based on the location of a bound 
ligand had a good overlap with catalytic and binding 
residue annotations from the structural databases. There-
fore, bound ligands can be used to extend the datasets 
for pocket and tunnel analyses. Our experiments showed 
that selecting the pocket purely by score or druggabil-
ity from Fpocket would be significantly less precise. On 
the other hand, our pipeline is limited to enzyme struc-
tures with bound ligands, which limits its use. However, 
this limitation is merely a consequence of being able to 

Fig. 4  An example of the case with a large difference between the energetical maximum identified by CaverDock and the geometrical bottleneck 
identified by CAVER. A Energy profile from CaverDock (solid) and the geometric profile from CAVER (dotted). The tunnel region with the energy 
maximum is highlighted with the red line, and the region with a geometric bottleneck is highlighted with the green line. B Visualisation 
of the tunnel with highlights corresponding to the energy profile. C Visualisation of the cognate ligand β-d-glucose conformations extracted 
from the trajectory from tunnel 1 of the structure of glucose dehydrogenase (PDB ID 2VWG). The binding pose based on the energy maximum (red) 
and geometric tunnel bottleneck (green)
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classify enzymes and their cognate ligands based on their 
reactions, which are available in public databases. Extrap-
olation of ligand positions among homologous protein 
structures could remove this limitation for many struc-
turally or functionally related proteins. Furthermore, the 
use of the pipeline to detect non-cognate ligands would 
probably provide less precise results as it would be harder 
to select the correct pocket for the following analyses and 
calculations. Due to the development of AlphFold [53] 
and AlphaFill [54] the protein engineering community 
has access to a staggering amount of new protein mod-
els and modelled complexes. As an example of the adapt-
ability of our pipeline, we contributed to the update of 
ChannelsDB 2.0 database [14]. We calculated tunnels for 
a dataset based on protein structures from AlphaFill with 
known cofactors. The position of cofactors was used to 
define the binding pocket and for the later calculation of 
tunnels in the model structures.

The presented machine learning predictor for the anno-
tation of pockets has proven to be efficient in deciding 
on the type of pocket. Based on the test set, the machine 
learning predictor demonstrated the accuracy of 54% and 
1-FPR metric of 75% of buried pockets in the three-class 
prediction. While there still is room for improvement, 
the current version shows reasonable performance for 
selecting whether a particular enzyme and pocket are 
viable for tunnel calculations. Most importantly, it uses 
the readily available features from the Fpocket, making it 
easy to obtain these necessary features. At the same time, 
we release the training data together with the scripts 
to encourage follow-up studies to improve the predic-
tor, e.g., by considering other, more discriminative fea-
tures. The structural analyses revealed that it is possible 
to select potentially biologically relevant tunnels both 
in ligand-bound and ligand-free structures. Tunnels are 
present in the enzymes of all seven EC classes. Strikingly, 
the ligand transport calculations revealed that the ener-
getic maximum was not in the geometrical bottleneck 
in 50% of analysed tunnels. Therefore, energy profiling 
provides a highly relevant information about hot spots 
for enzyme engineering. The comparison of CaverDock 
energetic maxima for calculated tunnels in each enzyme 
structure indicated that tunnel 1 had the lowest energy 
barrier in 75% of cases. This shows, that the energy analy-
sis by CaverDock is valuable addition to the study of tun-
nel geometry when multiple tunnels can be relevant for a 
specific ligand. To improve the predictive power of such 
analysis, the study of geometrical and energetical bot-
tlenecks should be done on a large set of dynamic snap-
shots. The results from a single structure may be biased 
by the enzyme conformation in the crystal structure.

The knowledge and data acquired in this study will 
be important for future screening studies and the 

development of computational tools. We showed that 
the presented pipeline could be used to generate fea-
tures for machine learning predictors and to provide 
valuable information for key repositories of biologi-
cal data, such as PDBe Knowledgebase [55]. The vali-
dation of CaverDock against MD simulations proved 
that approximative methods are precise enough for fast 
energetical analyses of ligand passages. Approximative 
methods and enhanced sampling simulations are nec-
essary to simulate ligand transport within reasonable 
times. Thus, we recommend energy calculations with 
approximative methods for protein engineering stud-
ies. Our comprehensive analysis of protein tunnels and 
the passages of cognate ligands let us formulate the fol-
lowing recommendations for the protein engineering 
community:

1.	 For analysis of tunnels in enzymes, start with the lit-
erature search and exploration of databases to deter-
mine essential residues, identify the location of the 
binding pocket, and discover  transport pathways, 
whenever possible.

2.	 The pocket(s) that contains the essential functional 
residues should be preferred. In the systems with 
unknown essential residues, the pocket which con-
tains a bound cognate ligand of the enzyme should 
be used. If there are no ligand-bound structures for 
the enzyme of interest, analyse available structures 
of homologous enzymes which contain the ligand. 
We recommend caution when selecting the binding 
pocket based solely on the predicted scores by the 
tools for pocket calculation.

3.	 The most important step of the tunnel analysis is to 
set the starting point correctly. When annotations 
of essential residues are not available the conserved 
residues are another possibility. Otherwise, we rec-
ommend using the residue inside of the selected 
pocket, closest to the centre of the biological unit or 
the analysed protein chain in the asymmetrical unit 
to start the tunnel calculation from the deep part of 
the pocket. An incorrectly set starting point may hin-
der the tunnel calculation and impact the geometry 
of found tunnels.

4.	 Selection of the biochemically relevant tunnel(s) 
should be preferably made based on the experimental 
literature data. When no such information is avail-
able, either focus on the first tunnel in a screening 
scenario, or the first three tunnels according to the 
highest priority score. CAVER users are advised to 
inspect the tunnels with priority scores above 0.55. If 
none of the found tunnels has a priority score above 
this value, select a different starting point and redo 
the calculations.
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5.	 If the starting point for tunnel calculation is selected 
correctly and the first tunnel is shorter than 5 Å, the 
binding pocket could be located on the surface and 
tunnel analysis might not be relevant.

6.	 Analysis of tunnels should be complemented by  the 
study of substrate or product passage whenever pos-
sible.

7.	 Use the ranges of energy barriers defined in this 
study to filter out molecules with poor (un)binding 
(EMax: − 10 kcal/mol to 5 kcal/mol, Ea: 0 kcal/mol to 
10 kcal/mol) for energetic analyses of ligand passage 
by the approximative method CaverDock [16]. Other 
methods available for this purpose are SLITHER [56], 
MoMA-LigPath [57], GPathFinder [17], and ART-
RRT [18].

8.	 Binding and unbinding studies by the approximative 
methods can be significantly enhanced by the analy-
sis of an ensemble of structures obtained even from a 
short molecular dynamics simulations.
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ABSTRACT: Enzymes play a crucial role in sustainable industrial
applications, with their optimization posing a formidable challenge
due to the intricate interplay among residues. Computational
methodologies predominantly rely on evolutionary insights of
homologous sequences. However, deciphering the evolutionary
variability and complex dependencies among residues presents
substantial hurdles. Here, we present a new machine-learning
method based on variational autoencoders and evolutionary
sampling strategy to address those limitations. We customized
our method to generate novel sequences of model enzymes,
haloalkane dehalogenases. Three design−build−test cycles im-
proved the solubility of variants from 11% to 75%. Thorough
experimental validation including the microfluidic device Micro-
PEX resulted in 20 multiple-point variants. Nine of them, sharing as little as 67% sequence similarity with the template, showed a
melting temperature increase of up to 9 °C and an average improvement of 3 °C. The most stable variant demonstrated a 3.5-fold
increase in activity compared to the template. High-quality experimental data collected with 20 variants represent a valuable data set
for the critical validation of novel protein design approaches. Python scripts, jupyter notebooks, and data sets are available on
GitHub (https://github.com/loschmidt/vae-dehalogenases), and interactive calculations will be possible via https://loschmidt.
chemi.muni.cz/fireprotasr/.
KEYWORDS: dehalogenase, protein engineering, machine learning, microfluidics, protein stability, variational autoencoder

■ INTRODUCTION
Biocatalysis is a promising field that offers sustainable and
environmentally friendly solutions for industries increasingly
driven by enzymes. Thanks to millions of years of evolution,
enzymes are fine-tuned to carry out specific chemical reactions
with high efficiency. This makes them attractive alternatives to
traditional catalysis, which often relies on harsh conditions and
toxic chemicals.1 Thus, these biocatalysts find application
across various industries, including pharmaceuticals, food
production, and sustainability efforts aimed at reducing waste
and energy consumption.2 Since natural enzymes often exhibit
suboptimal performance in non-native environments, enzyme
engineering is usually required to unlock their full potential.3,4

In addition to commonly used experimental approaches such
as directed evolution, scientists can also expedite the process
and reduce associated development costs by incorporating
computational methods.5,6 One group of computational
methods rely on physical-based modeling techniques such as
Empirical Valence Bond (EVB)7−9 and hybrid Quantum
Mechanics/Molecular Mechanics (QM/MM) methods, which
simulate atomic-level interactions and energy landscapes of
enzymes.10,11 Another group of methods exploit protein

sequences. These methods help navigate the vast sequence
space, as it is estimated that only a fraction of all possible
sequences fold into functional protein structures.12 Most
natural proteins have marginal stability,13 thus posing a
significant risk for any manipulations with their sequences.

Many computational methods aiming to refine the search
space of such sequence manipulations rely on homologous
sequences.14,15 These sequences of different but related
proteins stemming from a common ancestor contain rich
evolutionary information.16 Homologous protein sequences
can be employed to identify conserved and functionally
important regions, suggest beneficial mutations, and create
phylogenetic trees.17 Notable examples of approaches in this
context include the Maximum Entropy (MaxEnt) model and
ancestral sequence reconstruction. The MaxEnt model
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employs statistical energy derived from homologous sequences,
applying the maximum entropy principle to establish
correlations with enzyme catalysis and stability in both the
active site and more distant regions.18,19 Ancestral sequence
reconstruction utilizes phylogenetic trees and sequence
alignment techniques to trace evolutionary changes and infer
the sequences of ancestral proteins. This method has proven to
be a promising strategy for enhancing protein stability.20−24

Despite the recent progress in extracting evolutionary
information from multiple sequence alignments (MSA) of
homologous proteins, analyzing this variability is challenging.
Historically, this data was used primarily by looking at only one
or two positions at a time.25,26 More recent approaches extract
patterns by deep neural networks, in particular algorithms that
map the sequence space onto their internal low-dimensional
representation, also referred to as latent spaces. Generative
models trained on large data sets of tens of thousands of
sequences have shown excellent results in producing highly
interpretable embeddings and generating novel protein
variants.27−30 The most recent examples of this class include
diffusion models, which are trained to denoise synthetically
noised inputs. They were initially used to generate protein
backbone structures31,32 and predict the binding of a flexible
ligand to a protein33 but later have been adapted to generating
sequences as well.34,35 Another example is Generative
Adversarial Networks, which learn to generate new data
through competitive training involving two artificial neural
networks. For instance, ProteinGAN was used to generate
functional protein sequences of malate dehydrogenases.36

Variational autoencoders (VAEs) are a third type of MSA-
based models, which shows a particular promise in this domain

due to the explicit modeling of the latent space.37 VAEs have
already proven useful in several applications, including
predicting protein structures,38 discovering novel drugs,39

and predicting protein functions.40 By learning the latent
space representation of a specific family, VAEs provide valuable
insights into the evolution of protein families, as demonstrated
in recent studies exploring the phylogenetic relationships
within the latent space.41−43 In particular, Ding et al. showed
that the latent space of the variational autoencoders can
capture the biophysical properties of protein variants and the
phylogenetic relationships within protein families.41 However,
the study did not offer a strategy that would allow exploiting
these relationships to generate new proteins from the latent
space. For a comprehensive overview of generative models, we
refer the reader to an excellent recent review.44

Here we propose a simple strategy to leverage the
evolutionary-shaped geometry of the VAE-learned latent
space to design novel ancestral-like variants of haloalkane
dehalogenases (HLDs; EC 3.8.1.5). These enzymes cleave the
carbon−halogen bonds45 and are widely used in biocatalysis,
biosensing, cell imaging, and protein analysis.46 The proposed
workflow is based on a small number of proteins with known
functions and aims to produce new variants that preserve
catalytic function and improve stability (Figure 1). First, we
mined sequences with preserved catalytic residues using
EnzymeMiner47 to obtain an MSA of functionally related
proteins. Second, we trained a VAE and specified several
metrics to measure its capacity to generate protein sequences
and capture the phylogeny in the constructed latent
representations. Third, based on the geometry of the latent
space, we developed a sampling strategy and produced a

Figure 1. The scheme of the variational autoencoder-based pipeline for the design of novel sequences. (A) Advanced sequence search of
homologous proteins using EnzymeMiner.47 (B) Optimization of the variational autoencoder architecture to capture the sequence distribution of
the MSA and phylogenetic dependencies within the latent space. (C) Exploration of the evolutionary dependencies between the sequences
extracted from the variational autoencoder and its low-dimensional latent space. This representation is then used to guide the protein design
strategy and generate sequences along the trajectory from the query to the latent space origin. The generated sequences are characterized based on
their statistical and sequential properties to produce the evolutionary profile. This profile serves as a guide for selecting designs. (D) The
experimental characterization of the proposed designs is conducted. The orange frames represent the computational steps and the blue frame is the
experimental step.
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statistical profile of candidate sequences to select promising
variants from the evolutionary trajectory. Fourth, we overex-
pressed and characterized variants experimentally using
advanced microfluidics. Three consecutive rounds of exper-
imental characterization and workflow optimization resulted in
20 variants, sharing as little as 67% sequence similarity to
known HLDs. Obtained enzymes showed up to a 9 °C increase
in melting temperatures and an average improvement of 3 °C
across all soluble variants. We also observed a boost in activity,
up to 3.5-fold for the most stable variant, whereas most of the
other expressed variants showed activity levels comparable to
benchmark enzymes.

■ MATERIALS AND METHODS

MSA and Data Preprocessing
Two data sets, HLDI-IV, and HLDI-II, were created using the
EnzymeMiner tool47 based on haloalkane dehalogenase sequences.
Both data sets underwent preprocessing, including sequence filtering,
gap reduction, and clustering, to ensure diversity. The second data set
also underwent additional adjustments to reduce gaps and improve
solubility rates. Detailed descriptions of the preprocessing steps and
data set creation are provided in SI Section 1.1. These data sets were
then used to train models in multiple experimental rounds, specifically
HLDI-IV for rounds I and II, and HLDI-II for round III.

Two sets of experimentally measured stability values were mapped
to the latent space of VAE Model 1. The first set consisted of six
ancestral sequences from the previous ancestral campaign of the
thoroughly characterized dehalogenases DbjA, DbeA, DhaA, DmxA,
and DmmA.48 These sequences were realigned with the original input
MSA and preprocessed accordingly. The second set consisted of 24
previously engineered DhaA variants based on the FireProt
method,22,49,50 similarly aligned and preprocessed with the query
sequence P59336_S14 of the input MSA.
Variational Autoencoders and Training
Variational autoencoders (VAEs)37 are a type of deep generative
learning model whose goal is to learn the data distribution. VAEs
consist of two main components: an encoder and a decoder (Figure
1B). The encoder takes the input sequence and maps it to a lower
dimensional representation called a latent space. Within this latent
space, the encoded input is modeled as a normal distribution by two
parameters, the mean and the variance. Subsequently, the decoder
draws samples from this latent space distribution and maps these
samples back to sequences. The training of VAEs is based on
minimizing the loss function made of the reconstruction term
(penalizes incorrect reconstruction of the input data) and the
regularization term (serves to constrain the latent space distribution of
encoded values). The latter forces the latent space to be close to
normal distribution by measuring the Kullback−Leibler divergence.
As a result, the individual distributions are forced to overlap within
the latent space, ensuring proper alignment of the sequences
corresponding to the nearby points in the latent space. We tested
several architectures and eventually used one hidden layer in the
encoder and decoder, both composed of N neurons, where N is the
width of preprocessed MSA (number of positions), the latent space
dimensionality of 2, and either zero (rounds I and II) or decreasing
(round III) weight decay. We employed the tanh activation function
without dropout and assigned equal weighting to the reconstruction
and regularization terms in the training objective (SI Section 1.4).
The final model had 3 million parameters. We used the Adam
optimizer with a learning rate of 0.001 and stopped training after not
improving the loss function for more than 3 consecutive rounds.

In the conditional variational autoencoders (CVAEs),51 a tag
(LOW, MEDIUM, HIGH) was added to the encoder and decoder to
represent different solubility levels. The tags were generated based on
the solubility values predicted by SoluProt52 and binned to achieve
uniform distribution across bins and ensure balanced sample
extraction.53 A detailed description can be found in SI Section 4.

Model Generative Capacity
We performed a first- and second-order statistical analysis to compare
the frequency of amino acids at each position in the multiple sequence
alignment (MSA) between input and generated data sets. First-order
statistics assess the occurrence of each amino acid at a given position,
while second-order statistics capture pairwise relationships between
two positions. We computed the pairwise covariance scores to
evaluate how well the generative model reproduces interactions
between amino acids, an essential indicator for the likely stability and
function of the generated proteins.54 For this study, we used 3,000
randomly selected samples from both input and generated data sets
for the statistical comparisons. A detailed description is provided in SI
Section 1.2.
Average Reconstruction Accuracy and Controls
The average reconstruction accuracy of each sequence was
approximated as an average reconstructed sequence identity for
5,000 samples around the original sequence coordinates of its latent
space embedding based on the mean and variance returned by the
encoder for a given sequence. The negative control subset was
generated by sampling sequences from the profile of the input MSA
only based on the amino acid frequencies in each position. The
positive control subset comprised 5% of preprocessed sequences
randomly selected from the MSA and excluded from training. Finally,
the ancestral subset was composed of 100 reconstructed sequences by
the straight evolutionary strategy (see Construction of the evolu-
tionary trajectory). Except for the ancestral subset, all the subsets
contained the number of sequences corresponding to 5% of the
preprocessed data set.
Phylogeny Mapping and Evaluation
We generated 13 phylogenetic trees using our input MSA to analyze
the relationship between phylogenetic branches and the latent space.
Each tree had around 100 randomly sampled nodes, and ancestral
sequences were reconstructed using FireProtASR.22 We explored the
correlation between the depth of nodes and their latent space
embeddings and analyzed the directionality of tree branches within
the latent space similar to.41 See SI Section 1.3 for more details.
AlphaFold Structure Prediction and Manual Analysis of
the Suggested Mutations
For structural predictions of ancestral sequences, the AlphaFold2
Google Colaboratory implementation, ColabFold, using MMseqs2,
was used.55 We predicted structures without providing templates, and
we performed amber relaxation with 200 steps on the top-ranked
structure. We used the default MSA options with pair sequences from
the same species and unpaired sequences from separate MSA for each
chain (paired+unpaired option). The optimal structure was selected
automatically by ColabFold. The refinement process was repeated
over three cycles to improve the structure’s accuracy. The relaxed
first-ranked structure was used as the result of the prediction.

In round 3, the proposed mutations by VAEs were also curated
manually (see SI Section 2 for more detail). The visual inspection of
the modeled AlphaFold variants was performed by Pymol,56 and the
MutCompute web server57 was used to calculate the score per residue
(log-likelihood ratio). Thus, a positive score indicates that
MutCompute assesses the substituted residue as more likely to
occur in the given structural microenvironment than the wild-type
residue.
Protein Production, Purification and Whole-Cell Activity
Screening
First,E. coliBL21(DE3) cells (NEB, USA) were transformed with the
pET21b expression plasmid containing the corresponding gene,
plated on LB-agar with 100 μg/mL ampicillin, and incubated at 37 °C
overnight (12−16 h). Cells transformed with pET21b::DhaAwt,
pET21b::RLuc, and empty pET21b served as controls. For small-scale
protein overexpression and affinity purification, cultivation in 96-deep
well plates, harvesting, SDS-PAGE analysis, and high-throughput
affinity purification using TALON SuperFlow Metal Affinity Resin
(Takara) were performed (see details in SI Section 7.1). Cell
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cultivations for enzymatic screenings and halide oxidation (HOX)
assay58 were carried out, including cell cultivation, harvesting, and
whole-cell activity screening (see details in SI Section 7.2). For large-
scale protein overexpression and purification, selected mutant
enzymes were expressed inE. coliBL21(DE3), and purification was
done using metal affinity resin and gel filtration (see details in SI
sections 7.3−7.5).
Secondary Structure Experimental Validation
The secondary structure of the analyzed variants was experimentally
verified using circular dichroism (CD) spectroscopy, measured at 15
°C using a spectropolarimeter Chirascan (Applied Photophysics).
The samples were dissolved in 1 mM HEPES buffer or in the 50 mM
Phosphate buffer, and their concentration was adjusted to ∼0.18 mg/
mL. Data were collected from 185 nm to 260 nm with 0.25 s
integration time and 1 nm bandwidth using a 0.1 cm quartz cuvette.
Each spectrum was obtained as an average of five individual repeats.
Prediction of CD spectra was performed by PDBMD2CD59 (https://
pdbmd2cd.cryst.bbk.ac.uk), using either experimental structures from
PDB database (1CQW for DhaA) or AlphaFold models. The
estimation of secondary structure elements from experimental data
and PDB database structures was performed additionally by BeStSel60

(https://bestsel.elte.hu/).
Thermal Denaturation by CD and NanoDSF
Thermal unfolding of selected enzyme variants was carried out using a
Chirascan spectropolarimeter (Applied Photophysics, UK). Each
protein sample was diluted in 50 mM Phosphate buffer to the
concentration of 0.18 mg·mL−1 and measured in a 0.1 cm quartz
cuvette. Changes of ellipticity were monitored at three wavelengths
(195 nm, 210 nm, and 227 nm) from 15 to 80 °C with a 0.1 °C
resolution and 1 °C·min−1 heating rate. Recorded data were fitted
using the model “Sigmoid curve + slope” in the Pro Data Viewer
software (Applied Photophysics, UK). The apparent melting
temperature (Tmapp) was evaluated as a midpoint of the normalized
thermal transition.

Thermal unfolding was further studied using NanoDSF Prom-
etheus NT.48 (NanoTemper, Germany) by monitoring tryptophan
fluorescence over the temperature range of 20 to 95 °C, at a heating
rate of 1 °Cwith 20% excitation power. The thermostability
parameters (Ton and Tmapp) were evaluated directly by ThermControl
v2.0.2.
Dehalogenase Activity Measurements on MicroPEX
Activity measurements for the determination of temperature profiles
and substrate specificity were conducted on the capillary-based
droplet microfluidic platform MicroPEX,61 enabling the character-
ization of specific enzyme activity within droplets for multiple enzyme
variants in one run. A detailed description of the microfluidic method
can be found elsewhere62,63 and briefly in SI Section 7.6.

■ RESULTS
We developed the pipeline to leverage the power of the
variational autoencoder and its latent spaces for the design of
promising biocatalysts (Figure 1). This pipeline was inspired
by the previous studies reporting the connections between
latent space geometry and phylogeny for a given MSA,41,43

however, this connection has not been exploited for generating
new protein sequences thus far. We hypothesized that the
coordinates within the latent space could serve as a
navigational tool for identifying ancestral-like sequences,
offering a way to improve the stability of query proteins
while maintaining their function. We iteratively executed our
pipeline across three rounds, each iteration followed by
experimental validation to improve our workflow (SI Section
2). In both the first and second rounds, we utilized the same
trained VAEs (Model 1), with the only difference being a
revised selection of VAEs ancestors. In the third round, we
introduced changes to the MSA preprocessing and additionally

manual curation of the generated ancestors by AlphaFold and
MutCompute.16,57 In addition, during the third round of
experimental validation, we explored the possibility of
conditioning the VAEs on solubility scores returned by the
ML-based tool SoluProt.52 In total, three trained VAEs models
were explored in the third round (Models 2−4) to better
understand the strengths and weaknesses and refine our
approach.
Multiple Sequence Alignment Processing

The Data Collection Is Optimized to Preserve
Catalytic Activities. The first step of our pipeline is to
construct an MSA. Instead of using Pfam alignments as in,41

we narrowed the search of relevant sequences to those likely to
preserve the dehalogenation activity. Pfam MSAs are some-
times too broad, introducing large-gapped regions and making
it difficult to design proteins with desired functions.64 To
overcome this challenge, we used the EnzymeMiner web
tool,47 which generates alignments specifically selected for
function and catalytic site similarity (Figure 1A) as recently
demonstrated on diverse enzyme families, such as fluorinases,
marine bacterial flavozymes, and NADPH-dependent reductive
aminases.61,65−67

The query of haloalkane dehalogenase (DhaA) from
Rhodococcus strain TDTM0003 with UniProt ID P59336
yielded 22,567 sequences in EnzymeMiner. This extensive
search resulted in the creation of a data set named HLDI-IV.
To further refine the results, we preprocessed the resulting
MSA against the DhaA query by removing protein sequences
and positions with too many gaps. This step narrowed down
the size of the alignment to 12,053 sequences and 299
positions, which were used for training. The HLDI-IV data set
was utilized in both the first and second rounds of wet lab
experiments (SI Section 2, Figure S1).

Based on the low experimental solubility observed in the first
two rounds, we implemented a stricter protocol for creating
the initial MSA. Inspired by Vasina et al.,61 we focused on
more soluble HLD subfamilies I and II, generating a smaller
MSA. This data set included the well-characterized DhaA
enzyme from Rhodococcus sp. (UniProt ID P0A3G3), which
served as the updated query for MSA preprocessing. We
applied additional filters to reduce gap frequencies, lowering
the threshold for gap column removal and filtering columns
with frequent gaps, even if the query had an amino acid in that
position, resulting in an MSA width of 293 positions with
4,053 sequences (HLDI-II dataset).
Network Architecture Optimization

Variational Autoencoders Capture Sequence Spaces
and Sequence Distribution. Replicating the methodology
described by Ding et al.41 (SI Section 1.3), we demonstrated
the capacity of variational autoencoders (VAEs) to delineate
phylogenetic relationships among proteins in our HLDI-IV
data set (Model 1). By encoding sequences into a latent space
where evolutionary-related sequences map to nearby points,
we observed a star-like configuration with multiple spikes
radiating from a central point, reflecting the evolutionary
divergence within the data set (Figure S3). This structure
contrasts with the dispersed and unstructured representation of
random sequences, highlighting that the latent space for our
sequences captures their phylogenetic relationships, consistent
with observations described in the original publication.41

Before testing our hypothesis of generating ancestral-like
sequences, we embarked on selecting the best model
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architecture based on the implementation provided by Ding et
al.41 This involved optimizing the encoder, decoder, and
training procedure to minimize the difference between the
generated and input sequence distributions (generative
capacity)54 while also preserving the relationship between
phylogeny and the latent space (geometric properties). In
order to evaluate the model’s generative capacity, we
implemented several tests. The first test examined how well
our model reproduces the statistics of the input data set on the
output. To this end, we compared the first and second-order
statistics of 3,000 randomly sampled MSA input sequences
with those generated by our VAE model (Figure 2A-B)
following the approach outlined in previous studies.26,54,68 The
comparison revealed a close match between the two sets. We
integrated query reconstruction accuracy69 as an additional
metric in our analysis to ensure that the model was capable of
reconstructing the query sequence with minimal mutations.
Notably, the final Model 1 demonstrated the ability to
reconstruct 98% of the query.
Our second test evaluated the model’s statistical profile by

measuring the average reconstruction accuracy for sequences
from various control sets. The test showed that the model
could distinguish random sequences from MSA sequences
using a reconstruction accuracy cutoff of around 50%. In other
words, all the sequences from the negative set had an average
reconstruction accuracy below this threshold together with
only 23 of sequences from training and positive control sets,
while the remaining 1201 sequences from these two control

sets had an average reconstruction accuracy above this
threshold (Figure 2C).

VAEs Capture Evolutionary Trends. To preserve evolu-
tionary information in the latent space, we monitored the
relationship between phylogeny and latent space geometry
(Figure 2D-F). Phylogenetic trees with inferred ancestral
sequences were mapped into the latent space, and we
quantified the distance between latent space points and their
corresponding positions in the phylogenetic tree (Figure 2D).
Additionally, we analyzed the angle between vectors from leaf
nodes to the origin and the first principal component of the
branch’s latent coordinates (Figure 2F). Our results show that
small dense encoder-decoder architectures capture evolu-
tionary dependencies, while deeper architectures disrupt
them (Figure S4). We set the dense layer width to match
the protein sequence length and used a latent space
dimensionality of 2 for simplicity and effective representation.
Testing with higher-dimensional latent spaces did not yield
significant improvements in reconstruction performance,
further supporting our choice of a two-dimensional latent
space (Table S1). Repeating this for Models 2−4 confirmed
our findings with a correlation of 0.8, supporting our choices
for layer width and latent dimensionality (SI Section 2).
Construction of the Evolutionary Trajectory

The Latent Space Captures Protein Stability. The
ancestral sequences are often associated with enhanced
stability compared to their extant counterparts.23,70 We
hypothesized that the structure of the latent space might

Figure 2. Showcases of the statistics used to measure the generative capacity of the final VAE model (Model 1, see SI Section 1) and the geometric
properties of its latent space. (A) The first-order statistics for 3000 sequences randomly selected from the input MSA or VAE-generated. The red
dots represent the gap symbol frequencies in sequence positions, while the blue points denote amino acids. (B) The second-order statistics
demonstrate that our model can reconstruct pairwise amino acid occurrences fairly well (ρ = 0.68). (C) The average reconstruction accuracy for
the negative (green), training (red), positive (blue), and ancestral (violet) control data sets. The shifts in the histograms between the sets imply that
the model can distinguish random sequences (negative) from those in the input MSA (training and positive) and those corresponding to the
straight-line strategy of generating ancestors (ancestors). (D) The Pearson’s correlation between depth in phylogenetic trees and latent space origin
distance. Most sequences in tree branches have a positive correlation indicating that the latent space captures phylogeny. (E) Mapping a small
phylogenetic tree onto the latent space. (F) Histogram illustrating the directional trends of phylogenetic tree branches projected onto the latent
space. In this representation, 1 indicates a straight trajectory toward the latent space origin, while −1 represents the opposite trend. The histogram
highlights that the majority of branches tend to align toward the latent space origin.
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encode stability and place more stable variants of our target
protein DhaA closer to the origin compared to the wild type.
To test this hypothesis, we mapped two sets of experimentally
measured stability values to the latent space of Model 1. The
first set consisted of six ancestral sequences from the previous
protein engineering campaign (DbjA, DbeA, DhaA, DmxA,
and DmmA).48 The second set consisted of 24 previously
engineered DhaA variants based on the FireProt meth-
od.22,49,50 Both data sets had latent space coordinates closer
to the origin of the latent space (Figure 3A-B), supporting the
notion that the latent space captures the information about
stability. The observations were also recapitulated for HLDI−
II data set and Model 2.

Latent Space Strategy Guides the Search and
Selection of Sequences. The regular distribution of stable
sequences in the latent space (Figure 3B) led us to develop the
straight-line evolutionary strategy. This strategy encodes the
query sequence (DhaA in our case) into its latent
representation and then follows the straight line connecting
that point to the origin of the latent space (Figure 3A),
mimicking the mapping of ancestral dependencies into the
latent space. In our experiments, the line is divided into 100
equal intervals, whose boundaries are then selected for
reconstruction by the decoder. The motivation for the
straight-line evolutionary strategy is based on the observation

by Ding et al.41 that ancestors tend to be placed closer to the
origin of the latent space. Therefore, sequences reconstructed
in this direction from the latent space might be ancestor-like,
e.g., show increased stability. For the sake of brevity, in what
follows we will refer to these ancestor-like designs generated by
the decoder from the straight-line evolutionary strategy in the
latent space as “ancestors” and use the prefix “Anc”.

To represent the designed sequences, we analyzed several
statistical parameters for the individual designed sequences:
the average reconstruction probability, similarity to the query
sequence, similarity to the closest sequence from the training
set, and the number of insertions/deletions compared to the
query sequence. The values obtained were plotted and visually
inspected to identify variants with interesting statistical values.
The generated profiles were then used to select suitable
variants for subsequent experimental characterization (Figure
3C).

Using the statistical profile, we identified 9 promising
designs in the first round for further laboratory experiments to
gain deeper insight into the statistical indicators. These designs
exhibited a wide range of sequence variability, ranging from 45
substitutions and no insertions or deletions (indels) to 138
substitutions and 109 indels (Table S2) (AncDhaA1−9). The
substitutions and indels, with deletions in most cases, covered
the entire protein structure. In the second round, we focused

Figure 3. The straight-line evolutionary strategy for Model 1. (A) Straight-line evolutionary strategy reconstructed 100 sequences along the
trajectory from query embedding to the latent space origin (black dashed line). The embeddings of previously characterized ancestors (gray points
1−5 denoting AncHLD variants of the respective number48) and engineered DhaA variants49 (magma spectrum points) are mapped closer to the
latent space origin, supporting the idea behind our ancestral generation strategy. (B) A detailed view of the previously engineered DhaA variants.
While there is no strong correlation between the positions in the latent space and the stability gain (ΔTm) of variants up to 28 °C, some of the most
stable points are situated closer to the origin. (C) The statistical profile of 100 sequences from the straight-line evolutionary strategy. The vertical
lines represent sequences selected for experimental characterization for the first and second rounds (Table S2) where dashed line variants were
successfully expressed, while for dotted lines, no soluble expression was observed. The ancestors are numbered 1 to 100 based on their order in the
VAE-generated latent space, with lower numbers being closer to the starting sequence and higher numbers representing more divergent designs
closer to the latent space origin. Number 0/Query represents the reconstruction of the original embedding of the query sequence.
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on the more conserved variants (ancestors 5, 7, and 8 in Figure
3C; AncDhaA10−12 for reference in experiments) with 7 to
34 substitutions without indels. Altogether, 12 designs were
selected for laboratory expression and biophysical character-
ization from Model 1.
Variant Selection Conditioned for Soluble Proteins

Solubilization of Designs by Introducing New Knowl-
edge to the Data Set. As we observed low solubility in the
first round (see Section Experimental Characterization of
Expressed Variants and Figure S10A-B), we incorporated
previous findings on the low solubility of HLD subfamilies III
and IV61 in our workflow. To this end, we embarked on a third
round of experiments restricted to the HLD subfamilies I and
II. This round focused on training additional models (Models
2−3) and designed eight DhaA variants (AncDhaA13−20,
Table S2). The first candidate VAE (Model 2) achieved up to
97% similarity in query sequence reconstruction with
satisfactory second-order statistics. Considering the often-
disruptive impact of indels, we selected and curated five
designs from the straight-line evolutionary strategy accumulat-
ing at most one indel (AncDhaA13−17). Another VAE was
trained from a different initialization (Model 3). During
analysis of this model, we found that at the end of
reconstructed sequences, it incorporated a His-tag sequence,
common peptide tag for protein purification. The inclusion of

the His-tag likely happened during the training phase, which
influenced the model’s generation of sequences. Overall, 42
out of 100 reconstructed sequences from the straight-line
evolutionary strategy exhibited the closest sequence similarity
toward 5 different protein sequences of PDB structures found
in HLDI−II data set. Additionally, Model 3 had a curious
pattern for the origin of the latent space: the model
demonstrated a significant shift in sequence similarity toward
DbjA. Therefore, we selected ancestor 99 (AncDhaA20) from
this model for further experimental characterization to explore
its unique shared sequence similarity to both DhaA (52%) and
DbjA (93%).

Solubilization of Designs by Conditional Variational
Autoencoder. Finally, in the third round, we also decided to
explore one more solution to low solubility, conditional
variational autoencoders (CVAEs). To this end we added
solubility scores from SoluProt52 to the training, discretized
into three bins for low, moderate, and high solubility values
(Model 4) (Figure S6A). We conditioned the sampling process
from Model 4 using a straight-line evolutionary strategy on the
highest bin label forcing CVAEs to introduce patterns from
sequences with predicted high solubility in decoded designs
(Figure S5). We took two variants from Model 4: ancestor 0
(AncDhaA18) with 30 mutations as the control of the pattern
extracted from highly soluble sequences and ancestor 18
(AncDhaA19), which had 49 mutations and one deletion in

Figure 4. Experimental characterization of selected variants. (A) Far-UV circular dichroism spectra probing the correct folding and secondary
structure of the variants. (B) Normalized thermal denaturation curves from nanoDSF spectroscopy with apparent melting temperatures (Tm

app) are
shown above the curves. (C) The dependence of specific activity on temperature. The heatmap represents the relative activity of individual variants.
(D) The score plot shows the first principal component PC 1 explaining 84.9% of the data variance, which compares VAE-based designs (in color)
with previously characterized wild-type haloalkane dehalogenases (gray)61 in terms of their activity with 27 substrates being determined by the
MicroPEX method.62 The highlighted range between DmbA and LinB corresponds to the ranges of values observed for previously characterized
AncHLD variants.48 The values of PC1 above this range imply that the overall activity of the corresponding designs was higher than those for
previous AncHLD variants. The color code for individual variants is shown at the bottom.

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.4c01101
JACS Au 2025, 5, 838−850

844

https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c01101/suppl_file/au4c01101_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c01101/suppl_file/au4c01101_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c01101/suppl_file/au4c01101_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.4c01101/suppl_file/au4c01101_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01101?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01101?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01101?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacsau.4c01101?fig=fig4&ref=pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.4c01101?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the coil region at position 32 (Figure S6B), as it exhibited high
confidence in the model (reconstruction probability of
93.28%) and an increased number of high probable residues
(85 positions scored above 90%).

Refining the Mutations by Manual Curation of the
Structures and Stability Scores. From Model 2, we selected
three ancestors with unique features: ancestor 3 closely
mimicked the wild type with 98% similarity; ancestor 16
notably introduced a proline at position 75; and ancestor 23
was the last variant starting with a regular sequence pattern
(MSEIGT), suggesting high solubility and expression potential
based on its 88% similarity to the PDB sequence4WCV. To
increase our chances of producing soluble variants, we
manually curated proposed mutations based on the structural
predictions from AlphaFold16 and stability assessments using
the MutCompute tool57 (Table S3). Mutation manual curation
led to the classification of VAE-proposed mutations into safe
and risky categories, respectively (SI Section 3). Starting from
ancestor 3, we kept four nonrisky mutations. We removed two
structurally and statistically risky mutations P34V and L238F
from the original six-point variant proposed by the VAE,
producing the design AncDhaA14. As experimental validation
of identified risky mutations, we selected ancestor 0 with eight
substitutions (AncDhaA13). For the second manually curated
variant (AncDhaA16), we selected ancestor 15 as the template,
which included as the last VAEs ancestor with no insertions,
and we removed the risky mutations P34V and L238F, leaving
nine mutations compared to the DhaA wild type. To
experimentally determine the effect of suggested proline
insertion with risky mutations, we selected ancestor 16 as
predicted by VAEs (AncDhaA15) (Figure S2). As a template
for the third manual curation target, we selected ancestor 23.
We incorporated all mutations suggested by the VAEs except
the risky ones (P34V, L238F) and the proline insertions,
resulting in a final design carrying 32 mutations (AncDhaA17).

Investigation of Trajectory Mutational Patterns in
VAEs Designs. To gain a comprehensive understanding of
how VAEs propose mutations across designs, we further
analyzed mutational patterns along the evolutionary trajectory
generated by VAEs Model 2. The analysis indicated that
mutations are not distributed randomly but tend to accumulate
at specific positions, suggesting a targeted evolutionary
trajectory rather than a stochastic process. Additionally, certain
mutations introduced in earlier designs were retained in
subsequent designs, while others were reverted, indicating an
iterative refinement process. Further details on the mutational
profiles and alignment patterns of the generated ancestors are
provided in SI Section 6 and Figure S8, S9.
Experimental Characterization of Expressed Variants

Variant Production. Protein overexpression, purification
and assessment of solubility and whole-cell activity testing was
carried out in three rounds (Table S2, SI Section 7), yielding 9
soluble variants: AncDhaA1 (round 1), AncDhaA10−11
(round 2) and AncDhaA13−16, 18, and 20 (round 3). Thus,
the success rate in obtaining soluble variants gradually
increased from 11% in round 1 to 67% in round 2 and
reaching 75% in round 3. The whole-cell activity screening by
HOX assay revealed that 6/9 soluble variants were active with
a benchmark substrate 1,2-dibromoethane (Figure S11).

Secondary Structure Analysis. To confirm the proper
folding of the studied variants, circular dichroism (CD) spectra
were collected for all soluble variants (Figure 4A). Overall, CD

spectra of most variants highly resemble those of the templates
(typical α/β-hydrolase fold), confirming proper folding. On
the contrary, the spectra of AncDhaA1, AncDhaA11,
AncDhaA15, and AncDhaA18 (Figure S12) deviated from
the templates. To further understand the secondary structure
of the variants, BeStSel server60 was used for fitting
experimental data and analysis of PDB structures, and
PDBMD2CD59 was used for predicting CD spectra from
experimental structures of templates and AlphaFold models of
selected variants. Figure S12B shows that the prediction of CD
spectra based on AlphaFold structures did not match the
experiments in all the variants. This highlights a limitation in
AlphaFold’s ability to accurately predict changes in folding and
emphasizes the need for further improvements in computa-
tional methods. Experimental validation remains essential to
address this challenge.

Thermostability. Thermodynamic stability of all variants
was assessed by nanodifferential scanning fluorimetry (Figure
2B, Table S4). The apparent melting temperatures for the
variants were in the range of 45 °C−60 °C. AncDhaA13,
AncDhaA14, AncDhaA16 and AncDhaA20 surpassed the
respective query in terms of apparent melting temperature.
The highest ΔTm of 9 °C was measured for AncDhaA20.
Protein aggregation was observed for the variants AncDhaA1
and AncDhaA20, showing the onset at 45.5 and 48.5 °C,
respectively (Figure S13).

Temperature Profiles. We then proceeded to measure
temperature profiles (Figure 4C). Most variants showed the
Tmax (temperature at which maximum activity was detected) of
40 °C, which is in agreement with previously determined
temperature profiles for DhaA.62 Notably, AncDhaA13 showed
Tmax of 50 °C, which aligns with its increased thermostability.
The temperature profiles for AncDhaA11 and AncDhaA16
were not obtained, as the activities were below the detection
limit. Due to compromised activity and folding, both variants
were excluded from the subsequent substrate specificity
profiling.

Substrate Specificity. The temperature of 35 °C was
selected for the subsequent specificity characterization for
being below the onset of denaturation (Table S4) for most of
the remaining variants and close to their Tmax values. To
explore the obtained substrate specificities in the context of the
haloalkane dehalogenase family, the principal component
analysis (PCA) was conducted by augmenting the previously
used data set comprising substrate specificities for 32 wild-type
dehalogenases61 with the newly obtained data. The PCA of raw
data (Figure 4D) as a standard representation of overall
dehalogenase activity46,61,71 showed that AncDhaA20 sur-
passed both Templates, DbjA and the previously characterized
AncHLD variants.48 The higher values of PC1 indicate the
higher overall activity, as the first principal component
corresponds to the weighted average of all the activities,
shifted to be centered around zero. The acquired substrate
specificity data for previously characterized AncHLD variants
are not directly comparable with the MicroPEX data, however,
due to different assays used. Therefore, only an approximate
area of graph where AncHLD variants stand in terms of overall
activity could be determined (Figure 4D). The overall activity
of AncDhaA10 was also higher than the previously
characterized AncHLD variants, on the level of the wild
type. Three more variants showed activity in the ranges of
previously characterized AncHLD, and two more below
(Figure S14).
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The analysis of log-transformed activity data (Figure S15)
further showed that AncDhaA1, AncDhaA10, AncDhaA13,
and AncDhaA14 differed only very slightly from templates in
their substrate preferences. The profiles of AncDhaA18 and
AncDhaA20 resembled more closely the specificity profile of
DbjA, which is not unexpected in the case of AncDhaA20 due
to its high sequence similarity. AncDhaA16 differed signifi-
cantly from all other variants due to the low number of
converted substrates (10 out of 27). Probable activity with
other substrates could have ended below the limit of detection
(different for each substrate, in the range of 10−100 μM).

■ DISCUSSION
In this study, we utilized variational autoencoders (VAEs) to
map functionally related haloalkane dehalogenase sequences
from EnzymeMiner onto VAEs latent spaces, following an
approach inspired by Ding et al.41 This process revealed that
the latent space could capture the phylogenetic relationships of
the sequences, which motivated us to employ the VAE
framework to create ancestral-like variants of the haloalkane
dehalogenase DhaA. We tuned the network hyperparameters
to accurately reflect the statistical frequencies of the input
while maintaining the relationship between evolutionary
trajectories and latent spaces. We discovered that a simple
feed-forward neural network with a single dense layer matched
to the input MSA columns and the two-dimensional latent
space42 was enough for this task.
We then introduced a simple strategy to generate novel

sequences based on the geometry of the latent space. We
achieved this by reconstructing the embeddings along the
trajectory toward the origin of the latent space. Employing this
strategy, we systematically executed the pipeline in three
rounds of laboratory experiments and optimization, leading to
four VAEs models producing 20 designs in total. Similarly to
the study of computational filter evaluation for synthetical
protein designs from generative models,72 each iteration
revealed new insights, allowing for iterative refinement and
improvement of our approach. Notably, we increased the
success rate of soluble designs from 11% in the first round and
66% in the second round to 75% in the third round, illustrating
the effectiveness of applying accumulated knowledge for
improvement (SI Section 2).
In the first two rounds, we faced solubility issues, with three

designs (AncDhaA1, AncDhaA10, and AncDhaA11) showing
sufficient expression for detailed characterization (secondary
structure, thermostability, temperature profiles, and substrate
specificity) including the in-house microfluidic device Micro-
PEX73 . Surprisingly, the predicted CD spectra from AlphaFold
structures differed significantly from experimental data (Figure
S12). While AlphaFold predicted native-like structures,
experiments revealed misfolding, suggesting a bias toward
native folds in AlphaFold predictions for synthetic sequences
generated by protein language models.74 Thermostability
analysis showed no significant changes, and AncDhaA10
exhibited above-average activity among the haloalkane
dehalogenases.
In the third round, we addressed solubility by refining the

input MSA to HLD subfamilies I−II, applying stricter
preprocessing to suppress indels, and manually curating
sequences by incorporating AlphaFold16 and MutCompute57

stability assessments. These steps improved solubility in most
designs. Interestingly, the noncurated AncDhaA13 showed
good solubility and activity despite risky mutations (P34V and

L238F), highlighting the limits of current tools in predicting
epistasis effects. On the other hand, manual curation rescued
poorly soluble AncDhaA17, which informed the design of
AncDhaA16 and predicted the disruptive impact of a proline
insertion on AncDhaA15’s activity. We also observed that even
despite a large number of mutations (51.4−98.5% sequence
identity to template, Table S4), all soluble designs showed
stability at least comparable to that of the WT (the smallest
Tm

app was 45.4 °C), which further emphasizes the utility of
VAEs in suggesting new protein sequences. Furthermore, in
terms of overall activity, 5 out of 7 variants showed comparable
or higher activity than previously characterized AncHLD
variants48 (Figure 4D).

A different initialization of a model training and stricter
threshold of column removal with query amino acid positions
in the third round led to a second VAE model, which
generated sequences with an implicit His-tag and high
similarity to proteins with known experimental structures.
Investigating the sequence reconstructed from the origin of the
latent space (AncDhaA20) unveiled a notable shift in similarity
toward another wild-type dehalogenase, DbjA,75 altered
substrate specificity, increased thermostability (60 °C) and
improved activity (3.5-fold), being a top-performing haloal-
kane dehalogenase (Figure 4D, Table S4). To better
understand the sensitivity of the straight-line evolutionary
strategy to different initializations, we examined the embed-
dings over an ensemble of four randomly initialized VAEs (SI
Section 5, Figure S7). Although we observed a general trend
that the straight-line evolutionary trajectories converged
toward the origin of the latent spaces of different VAEs, it
was also evident that the trajectories exhibited quite wide
scatter. This suggests that ensemble learning76 might be an
interesting direction for follow-up research to improve the
robustness of our strategy.

Another promising direction for further improvement
include developing better scoring methods for the sequences
generated by protein language models, particularly those that
will allow filtering out misfolded or poorly soluble designs in
silico, and adopting the recent developments in transformer-
based architectures, which have demonstrated a better capacity
for learning from amino acid sequences.77,78 Integrating
transformer-based architectures with manifold learning can
further enhance their ability to generate sequences of stable
and soluble proteins.42,43 To bolster the robustness of future
studies, adopting a generation protocol for ancestral sequences
that incorporates an ensemble of models might also be
advantageous.79 This approach addresses the observed
instability of ancestral trajectories within the latent space and
could establish a more reliable foundation for future
investigations.

■ CONCLUSIONS
Our study demonstrated that the structure of the latent space
and the generative potential of VAEs are capable of guiding the
sequence search and designing novel soluble and functional
proteins with enhanced stability. The workflow underwent
systematic improvements through three consecutive design-
build-test phases, with each iteration informed by the findings
from the previous one. The success rate of soluble designs
increased from 11% in the first round to 66% in the second
round and 75% in the third round. Through this process,
complemented by manual curation of specific variants, we
achieve a notable increase in stability�up to 9 °C for the top-
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performing AncDhaA20 variant, with an average improvement
of 3 °C and a significant boost in activity up to 3.5-fold. The
frequency and location of indels were the most critical
parameters. In general, we recommend selecting designs with
a low number of indels or with high protein similarity to
natural sequences, preferably to those in PDB. A current
limitation of our study is that it was conducted using a single
enzyme family. Validation of designs from other protein
families will help understand the generalizability of the
developed approach. Overall, our study demonstrates that
VAEs represent a promising strategy for generating novel
soluble, stable, and functional enzymes.
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(60) Micsonai, A.; Moussong, É.; Wien, F.; Boros, E.; Vadászi, H.;
Murvai, N.; Lee, Y.-H.; Molnár, T.; Réfrégiers, M.; Goto, Y.; Tantos,
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Anticipating protein evolution 
with successor sequence predictor
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Stanislav Mazurenko1,2* and David Bednar1,2* 

Abstract  The quest to predict and understand protein evolution has been hindered by limitations on both the 
theoretical and the experimental fronts. Most existing theoretical models of evolution are descriptive, rather than pre-
dictive, leaving the final modifications in the hands of researchers. Existing experimental techniques to help probe 
the evolutionary sequence space of proteins, such as directed evolution, are resource-intensive and require spe-
cialised skills. We present the successor sequence predictor (SSP) as an innovative solution. Successor sequence 
predictor is an in silico protein design method that mimics laboratory-based protein evolution by reconstructing 
a protein’s evolutionary history and suggesting future amino acid substitutions based on trends observed in that his-
tory through carefully selected physicochemical descriptors. This approach enhances specialised proteins by predict-
ing mutations that improve desired properties, such as thermostability, activity, and solubility. Successor Sequence 
Predictor can thus be used as a general protein engineering tool to develop practically useful proteins. The code 
of the Successor Sequence Predictor is provided at https://github.com/loschmidt/successor-sequence-predictor, 
and the design of mutations will be also possible via an easy-to-use web server https://​losch​midt.​chemi.​muni.​cz/​firep​
rotasr/.

Scientific Contribution   The Successor Sequence Predictor advances protein evolution prediction at the amino acid 
level by integrating ancestral sequence reconstruction with a novel in silico approach that models evolutionary trends 
through selected physicochemical descriptors. Unlike prior work, SSP can forecast future amino acid substitutions 
that enhance protein properties such as thermostability, activity, and solubility. This method reduces reliance on resource-
intensive directed evolution techniques while providing a generalizable, predictive tool for protein engineering.
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Introduction
Evolution is a general term that describes the changes 
in inherited traits of biological entities through succes-
sive generations, generally in response to environmental 
changes [1]. While it can be modelled or described at 
many levels of biological organisation and varying lev-
els of accuracy, for this study, we will focus on protein 
evolution.

Protein evolution can be reduced to two key steps: 
amino acid mutation and the fixation of the mutated 
protein in a population [2, 3]. An individual mutation 
may result from errors in DNA replication during cell 
division, exposure to mutagens, or a viral infection. The 
probability of fixation of this new mutation in the popu-
lation depends on the fitness effect of the mutation itself. 
The new variant can be neutral, deleterious, or beneficial. 
While this two-step model is useful, it is only descrip-
tive and not predictive [4]. For this reason, it cannot be 
used to predict upcoming mutations in the future and 
their fixation probability [5]. Thus, generally the field of 
evolutionary predictions has been limited to forecasting 
adaptive processes, as opposed to amino acid level muta-
tions. Efforts to improve these kinds of predictions are 
typically focused on the aspect of selection. This neglects 
the fact that adaptive processes are reliant on new muta-
tions, which in turn do have predictable biases [6]. Yet 
most evolutionary predictions are focused on evolution 
of infectious diseases, cancer and or other somatic evolu-
tions at the phenotypic level [7]. An in silico methodol-
ogy that can predict evolution at the amino acid level can 
ease our reliance on cost prohibitive methodologies such 
as those in the realm of directed evolution [8].

Directed evolution refers to experimental techniques 
used to engineer a protein and possibly understand the 

effect of various mutations on a protein and their fixa-
tion probabilities. These techniques allow a user to probe 
a protein’s evolutionary space. They are used to improve 
protein characteristics and, sometimes, even to con-
fer new characteristics onto a protein [9] by selecting 
or screening many variants. The markers for improve-
ment in protein characteristics due to induced mutations 
can be taken as a proxy for fixation probabilities of the 
induced mutation in a natural environment if it occurs 
without human intervention. While this model has not 
been framed in such a way previously, it closely models 
the concepts of classic Darwinian/positive selection [10].

However, directed evolution experimental techniques 
require specialised skills and are both time and resource-
intensive. Thus, any in silico technique for predicting and 
mimicking laboratory-based protein evolution would be 
of great use for the design of proteins with novel prop-
erties. As of this writing, we have only come across one 
technique, Proseeker, which uses physicochemical char-
acteristics and structure to pick sequences that have 
higher probabilities of evolving a desired function [11]. 
However, the technique was designed specifically for 
binding proteins. It uses smaller peptide sequences (13 
amino acids), and it does not filter AAindices, i.e., physi-
ochemical descriptors [12], rather it uses all available 
AAindices. This leaves room for refinement by selection 
of more useful indices.

On the other hand, ancestral sequence reconstruc-
tion (ASR) complements these approaches by lever-
aging phylogenetic trees and sequence alignments to 
trace evolutionary changes and infer ancestral protein 
sequences [13–15]. By reconstructing evolutionary 
histories, ASR reveals positions in protein sequences 
where selective pressures have driven adaptations. 
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Building on this foundation, Combinatorial Libraries of 
Ancestors for Directed Evolution (CLADE) was devel-
oped to target specific positions identified through ASR 
[16, 17]. CLADE leverages the uncertainty inherent in 
ancestral reconstructions by creating combinatorial 
libraries, focusing on positions with the highest uncer-
tainty for mutagenesis. This strategy enables the explo-
ration of sequence space at evolutionarily significant 
sites, yielding superior results compared to consensus 
mutagenesis, which targets conserved residues from 
sequence alignments [18]. However ASR only lets us 
explore the evolutionary past of a sequence. Combining 
evolutionary insights with physicochemical properties 
through AAindices holds great potential for predicting 
evolutionary successors that align with physical evolu-
tionary pressures.

To this end, we propose a novel method called Suc-
cessor Sequence Predictor (SSP), which can mimic 
laboratory-based protein evolution. It reconstructs the 
evolutionary history of a protein sequence and then 
suggests amino acid substitutions based on trends 
observed in the evolutionary history of the protein 
when projected through the lens of various, carefully 
selected, physicochemical descriptors. Introducing the 
predicted mutations would enhance specific protein 
properties. For example, if SSP is used on a protein that 
in the history of its evolution was experiencing a selec-
tion pressure towards becoming more thermostable, 
the predicted substitutions will most likely make the 
mutant protein even more thermostable, and likewise 
for other physicochemical properties of the protein. 
We describe the method in detail and then conduct its 
critical validation against five different experimental 
data sets targeting properties such as thermostability, 
activity, and solubility. A dataset of amino acid sites 
that were determined to be positively selected by vari-
ous evolutionary sequence analysis methodologies was 
also incorporated in the validation [19].

Materials and methods
Selection of AAindices
Nine AAindices were manually selected after considera-
tion, to reflect a variety of possibly relevant physiochemi-
cal descriptors (Table 1). While the AAindex stores many 
more indices, they were considered inappropriate due 
to factors such as redundancy or context-specific physi-
ochemical descriptions. Correlation analysis ensured 
that the nine selected indices had significant differences 
(Fig. 1), and while molecular weight and residue volume 
indices were similar, they were retained due to the slight 
nuances of how they evaluated different amino acids. 
Thus no indices were discarded.

Successor sequence predictor workflow
Successor Sequence Predictor follows the workflow 
outlined in Fig.  2. Firstly, the FASTA sequence of a tar-
get protein is used to identify a dataset of homologous 
sequences using BLAST [27]. Only sequences with 
30–90% sequence identity to the target are retained. 
A length filter is then applied to keep sequences within 
80–120% of the target protein’s length. The remain-
ing sequences are clustered using USEARCH at 90% 
sequence identity, and one sequence from each cluster is 
randomly selected (Fig. 2A).

The dataset obtained from these steps is divided to con-
struct multiple phylogenetic trees, each containing 150 
sequences (Fig. 2B) with the final number of phylogenetic 
trees dependent on the dataset size. Before processing, 
the dataset is amended to ensure sequence headers do 
not contain problematic special characters (e.g., paren-
theses, colons, semicolons, or numbers at the start of 
headers) that could disrupt the function of the utilised 
tools. Next, sequences are clustered based on similarity 
using SigClust [28] with the parameter c = 150, producing 
up to 150 clusters. Sequence files are then generated with 
the following rules:

1.	 Each target sequence must appear in at least one 
sequence file.

2.	 One sequence is randomly selected from each cluster 
for each file.

3.	 To maximize diversity, the algorithm avoids reus-
ing sequences from clusters unless all options are 
exhausted.

4.	 Every sequence file must contain the target sequence.

Once the sequence files are prepared, ClustalOmega 
[29] creates a multiple sequence alignment (MSA) for 
each file.

The MSAs are then processed using the standard 
FireProtASR workflow [14]. RAxML [30] is employed to 

Table 1  The AAindices used to analyse amino acid evolution

The correlations among the individual indices are presented in Fig. 1

Index Property Reference

FASG760101 Molecular weight [20]

FASG760102 Melting point [20]

GOLD730102 Residue volume [21]

WOLR790101 Hydrophobicity index [22]

BHAR880101 Average flexibility indices [23]

BULH740101 Transfer free energy to the surface [24]

FAUJ880108 Localised electrical effect [25]

ZIMJ680103 Polarity [26]

ZIMJ680104 Isoelectric point [26]
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construct a phylogenetic tree for each MSA using the 
maximum-likelihood algorithm. RAxML runs in its SSE3 
version, using 50 bootstraps and the best-fit evolution 
matrix suggested by IQ-TREE. Once the calculation is 
completed, the minimum ancestral deviation algorithm 
is used to root the generated trees (Fig.  2C) [31]. This 
approach generally leads to highly similar trees across 
multiple runs, yet a level of stochasticity can still be 
expected as most of the employed tools rely on heuristic 
algorithms.

Rooted phylogenetic trees and corresponding MSAs 
are loaded into LAZARUS [32] to calculate posterior 
probabilities for each sequence file. LAZARUS uses 
the “codeml” module, the appropriate evolutionary 
matrix, and a fixed branch lengths, with gap reconstruc-
tion disabled (this step is handled by the gap correc-
tion algorithm implemented in FireProtASR). Based on 
the posterior probabilities and predicted ancestral gaps, 
ancestral sequences are reconstructed for each node in 
the phylogenetic tree. The main path from the root to the 
target sequence is identified for each phylogenetic tree 
(Fig. 2D).

The sequences from the target and all ancestral nodes 
to the root are extracted into a separate file and aligned 
using ClustalOmega. Finally, a Python script employing 

the “numpy” and “sklearn.linear_model” libraries [33] 
predicts the successor sequence as the next step along a 
regression curve, following these steps (Fig. 2E):

1.	 For each column in the MSA (referred to as a "Tra-
jectory"), a matrix of amino acid physicochemical 
features is generated, with each column representing 
one of nine selected AAindices.

2.	 For each column, a vector of changes in physico-
chemical features is calculated, weighted by the evo-
lutionary distance from the root node.

3.	 This vector is used to train a linear regression model 
to predict the next amino acid in the trajectory, mim-
icking laboratory-based protein evolution.

4.	 The distance between consecutive amino acids in the 
trajectory (based on AAindex values) is calculated as 
the average distance between nodes along the main 
path in the phylogenetic tree.

5.	 Separate regressions for each physicochemical fea-
ture are aggregated to assign categories and bundle 
predictions (Table 2).

6.	 This process is repeated for every column in the MSA 
and each sequence file.

Fig. 1  Pearson correlation matrix of selected AAindices. The correlation coefficients are colour-coded from dark purple at − 0.7 to off-white at 1.0. 
The indices are summarised in Table 1
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Fig. 2  A generalised overview of the Successor Sequence Predictor (SSP). A Initial curation and filtering of the target protein’s dataset. B Further 
division of data using a clustering methodology. C Phylogenetic tree reconstruction and ancestral sequence reconstruction for the nodes 
on the trees. D Trend construction and amino acid prediction. E Prediction bundling
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Several precautions are taken to minimize over-inter-
pretation of the linear regression approach. The regres-
sion plot is normalized by the number of transitions 
(amino acid substitutions) in the trajectory. If an amino 
acid remains unchanged across successive ancestors at 
a given position, it is treated as part of a group and not 
penalized in scoring. Transitions between groups are 
counted only when they occur.

Key metrics include the penultimate transition, which 
flags any changes inconsistent with the overall trend as 
a "break trend." Trajectory sequentiality is scored out 
of 100, with a perfect score achieved when each transi-
tion in a positive trend increases the feature’s value com-
pared to the previous one. Fluctuations in a trajectory 
are measured by dividing the number of different amino 
acids by the number of amino acid groups, reflecting the 
trajectory’s stability or variability. Sites with fewer than 
three transitions are excluded from predictions.

These scores are used to rank successor amino acid pre-
dictions for each site, index, and phylogenetic tree. The 
highest-ranking predictions are those with high sequenti-
ality, high fluctuation, and no break trend at the penulti-
mate amino acid position. Each amino acid prediction is 
averaged across sites and trees.

When multiple predictions agree at a specific site but 
differ in the mutation type, they are referred to as Site 
Agreeing Predictions (SAPs). Conversely, when pre-
dictions from different AAindices align on the same 
mutation, they are consolidated into a single predic-
tion, known as a Mutation Agreeing Prediction (MAP) 
(Table 2).

Validation datasets
Mutational datasets investigating a physicochemical 
property of any specific protein were searched through 
the literature. The ones with large enough datasets, 
which also had enough overlap with predicted mutations 
(thus allowing us to validate them,) were selected. This 
includes homolog sets for levoglucosan kinase—UniProt 
ID B3VI55 [34], cold shock protein CspB—UniProt ID 

P32081 [35], ADP-ribosylarginine hydrolase—Uniprot 
ID P54922 [19], and aminoglycoside 3’-phosphotrans-
ferase—UniProt IS P00552 [36].

Individual datasets were compiled in different ways. 
The levoglucosan kinase set was found via the in-house 
SoluProtMutDB database [37] by searching for a protein 
with a large number of experimentally validated single-
point mutations and their effects on the solubility of the 
protein. Similarly, the cold shock protein CspB dataset 
was found in the in-house FireProtDB database [38], by 
searching for a protein with a large number of experimen-
tally validated single-point mutations and their effects on 
the thermostability of the protein. In cases where multi-
ple values were available for a single mutation, the mean 
was taken. ADP-ribosylarginine hydrolase dataset was 
picked as it was one of the example cases for Slodkowicz 
and Goldman’s online tool [19] for Structure Integrated 
with Positive Selection. ADP-ribosylarginine hydrolase 
was picked after a literature review, due to the sheer num-
ber of single-point mutations tested (fully site saturated) 
on the target protein by Melnikov et  al. [36]. This natu-
rally presented a perfect test case for SSP. Individual and 
detailed dataset handling steps are noted in SI 2.

Results
Dataset statistics
We tested the performance of SSP on the homolog sets 
for levoglucosan kinase (solubility), cold shock protein 
CspB (thermostability), ADP-ribosylarginine hydrolase 
(selectivity), and aminoglycoside 3ʹ-phosphotransferase 
(activity). It is important to note that with the excep-
tion of Aminoglycoside 3ʹ-phosphotransferase dataset, 
none of the other datasets used in the study have the val-
ues for the relevant effect for every possible point muta-
tion that SSP predicts. Thus it is not possible to validate 
all predictions made by SSP. The results section only 
shows validation based on all mutational data points that 
SSP predicted and for which experimental labels were 
available. Figure  3 summarises the total single-point 

Table 2  An example of the generalised prediction bundling scheme for three different levels of prediction: prediction, site agreeing 
prediction (SAP), and mutation agreeing prediction (MAP)

Type Amino acid Position Prediction Index

Prediction A 12 L Size

Site agreeing prediction (SAP) A 12 L Size

R Hydrophobicity

Mutation agreeing prediction (MAP) A 12 L Size

Polarity

Flexibility



Page 7 of 12Khan et al. Journal of Cheminformatics           (2025) 17:34 	

mutational space, the available experimental values, the 
number of predictions, and the overlaps between the two.

Engineering thermostability
SSP predictions for Cold shock protein CspB were com-
pared to experimental data points with known effects of 
the mutation on protein thermostability from a collated 
dataset stored in the database FireProtDB [38]. In cases 
where values from multiple datasets were available, the 
mean values were noted. E3Q was the only MAP that 
was supported by more than three indices. E3K was sup-
ported by 2 indices, and all others were SAPs. The results 
are provided in Table 3.

There were 365 total mutations in the FireProtDB data-
set [38], of which 18% were enhancing mutations in 
terms of thermostability (ΔΔG lower than − 1 kcal/mol), 
55% were neutral (ΔΔG from − 1 kcal/mol to 1 kcal/mol), 
the remaining 27% were destabilising (ΔΔG greater than 
1  kcal/mol). The thresholds for stabilising, neutral and 
destabilising categories were taken from the FireProtDB.

From the 14 mutations predicted by SSP, six were sta-
bilising. The other eight mutations had ΔΔG values 

Fig. 3  The visualisation of overlaps between the available experimental data and the predicted data. A Overlap metrics for Cold shock protein CspB 
set (FireProtDB dataset—[38], B Overlap metrics for levoglucosan kinase set [34] C Overlap metrics for Aminoglycoside 3’-phosphotransferase set 
[36], and D Overlap metrics for ADP-ribosylarginine hydrolase set [19]. The experimental data are represented by a light green circle, while a dark 
green circle represents predicted data

Table 3  Effects of mutations generated by SSP on the 
thermostability of cold shock protein validated against the 
collated FireProtDB dataset [38]

a N/A data not available

Mutation by SSP Mean ΔΔG 
(kcal/mol)

△Tm (°C)a Prediction agreement 
type

L2R + 0.4 N/A Site agreeing

E3K − 2.48 + 16.6 Mutation agreeing

E3Q − 1.09 + 7.3 Mutation agreeing

E3R − 1.65 + 16.0 Site agreeing

E3V − 1.8 N/A Site agreeing

D24N + 0.66 − 6.9 Site agreeing

A46E + 0.07 − 5.0 Site agreeing

A46K − 1.41 + 8.4 Site agreeing

A46L − 0.8 N/A Site agreeing

E50K + 0.33 − 5.6 Site agreeing

N55D − 0.46 + 3.9 Site agreeing

N55K 0 + 0.8 Mutation agreeing

N55S + 0.2 N/A Site agreeing

E66K − 2.17 + 12.9 Site agreeing
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between −  1  kcal/mol and 1  kcal/mol and can thus be 
classified as neutral. Seven out of ten mutations also 
increased the melting temperature (Tm) of the protein, 
and three were destabilising (Table 3).

Engineering solubility
SSP predictions for levoglucosan kinase were compared 
to experimental data from Klesmith et  al. [34] available 
in the SoluProtMutDB [37]. This comparison assessed 
how well the SSP predictions matched the known effects 
of mutations on protein solubility.The mutations I3L 
and I3F (supported by two different indices) had a neu-
tral effect on solubility. Both mutations predicted by SSP, 

D9G and K38Q, are known to have a slightly enhancing 
effect on solubility. Only V200A showed a slightly nega-
tive effect on solubility in E. coli (Table 4). This suggests 
that the expressed mutants produced via SSP do not 
compromise their solubility.

Engineering activity
Aminoglycoside 3ʹ-phosphotransferase is a protein that 
confers resistance to aminoglycosides, such as kanamy-
cin, neomycin, paromomycin, ribostamycin, butirosin, 
and gentamicin B. Melnokov et  al. [36] conducted site 
saturation mutagenesis on this protein, transformed vari-
ants into cells and exposed them to six different antibiot-
ics at up to four different concentrations. The amino acid 
enrichment (the number of identified variants with the 
particular mutation) was then noted in each case. A value 
of ~ 1 applies to wild types, while a higher value means 
more resistance and hence more significant enrichment 
of that mutant, and vice versa for a value below 1 (Fig. 4).

The average of all enrichment values across antibiotics 
and their concentrations in the complete dataset (AAC 
value) was 0.82. This means that a random, single-amino-
acid variant is less likely to be resistant than the wild type, 
and, therefore, will have lower activity. The AAC value 
of 0.82 may be assumed as a proxy value for random 

Table 4  Effects of mutations generated by SSP on the solubility 
of levoglucosan kinase [34]

Mutation by SSP Effect on solubility Prediction agreement type

I3L Neutral Mutation agreeing

I3F Neutral Mutation agreeing

D9G Positive Site agreeing

K38Q Positive Site agreeing

V200A Negative Site agreeing

Fig. 4  Heatmap visualisations comparing the enrichment values for mutations of aminoglycoside 3’-phosphotransferase. A A heatmap 
representing the entire mutational space of aminoglycoside 3’-phosphotransferase. B A heatmap representing only the mutations 
of aminoglycoside 3’-phosphotransferase that were predicted by the SSP. The X-axis represents the antibiotics and their tested concentrations, 
while the Y-axis represents the relevant mutations of aminoglycoside 3’-phosphotransferase. Details of antibiotic concentrations and individual 
enrichment values can be found in SI 1. Each rectangle on the plot indicates the enrichment value for a mutation when exposed to the effects 
of the specific antibiotic concentration. The Viridis colour map is used to maintain perceptual uniformity. A value of 1 (dark blue) represents 
no change in enrichment from the wild type, anything below 1 (purple) represents a negative effect on enrichment, while anything above 1 
(light blue to yellow) represents a positive enriching effect of the mutation. This figure contrasts the effects of random mutations on the activity 
of aminoglycoside 3’-phosphotransferase, against the effect of SSP suggested mutations for the same protein. The perceptual increase 
in ‘brightness’ of B over A illustrates an increase in the positive impact of mutations on the activity of aminoglycoside 3’-phosphotransferase
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mutations, while 1 is the default value for the wild type. 
Thus, random single-point mutations are likely to reduce 
the protein’s fitness. SSP generated 221 predictions, all 
with experimental validation points available from this 
large-scale site saturation mutagenesis study (Fig. 4). For 
mutants generated by SSP, the AAC value is 1.36, show-
ing a preferable selection of enriched (more active) vari-
ants, thus an increase in fitness if a mutation is selected 
from SSP’s output. Moreover, 61 of the 221 mutations 
were predicted at the MAP level, and their AAC value 
is 1.4. The remaining 160 predictions were made at the 
SAP level, and their AAC value is 1.34. As the AAC value 
for MAP level predictions is slightly higher than that for 
SAP level (1.4 versus 1.34), it hints at the possibility that 
MAPs may be slightly more reliable. This is summarised 
in Fig. 3C. The comparison of experimentally determined 
and predicted values are available in the supplementary 
table SI 1.

Evolutionary selection
Structure Integrated with Positive Selection (SIPS) is an 
online resource with positively selected sites mapped 
onto protein structures from an evolutionary perspective 
[19]. ADP-ribosylarginine hydrolase, which is one of the 
example cases of SIPS, has eight positively selected sites 
with an adjusted p-value threshold of 0.2 or higher. SSP 
predictions were made for ADP-ribosylarginine hydro-
lase to see how many of the predictions could be made 
for positively selected sites. Here, the emphasis was on 
sites and not the mutation itself, as SIPS only lists sites 
of evolutionary interest and not what they would mutate 
into. Out of the eight sites, seven were predicted by SSP, 
and six were MAPs, implying that SSP can selectively 
make predictions for sites with evolutionary significance 
(Table 5).

Discussion and conclusions
SSP is a protein design method that employs the predic-
tion of the evolution of amino acids in a protein sequence. 
It builds a statistical, ancestral sequence reconstruction-
guided evolutionary history of a protein sequence [39], 
which is utilised to extrapolate the possible future sub-
stitution at a given position. SSP makes these predic-
tions in the context of AAindex scoring [12] applied to 
the reconstructed evolutionary history for each position 
in a protein sequence. The AAindices used for SSP have 
been manually selected to reflect a variety of possibly 
relevant physiochemical descriptors. The selected set of 
AAindices can be easily adjusted based on the physico-
chemical properties expected to be involved in shaping 
the evolution of a particular protein.

It should be noted that while SSP utilises ASR, they 
are both fundamentally different techniques with dis-
tinct goals. ASR aims to ‘look back’ into the evolution-
ary history of a protein sequence, while SSP is designed 
to extrapolate into the potential future of a protein 
sequence. ASR is generally used for evolutionary analysis 
[40] and protein engineering [39]. While ancestral pro-
teins are more robust and with unique substrate specifici-
ties [32, 41, 42], the engineering scope of ASR is generally 
along the lines of improving the thermostability of a 
protein and its expression yield. This is because ances-
tral proteins, when resurrected, tend to be more robust 
[43]. SSP can map out potential future evolutionary tra-
jectories of a protein, and it can also be used to engineer 
proteins.

Proseeker is another tool that simulates natural selec-
tion and thus mimics evolution in silico. It uses physico-
chemical characteristics and structural information to 
pick sequences that have higher probabilities of evolv-
ing a desired function [11]. However, the technique was 
designed specifically for binding proteins and lacks gen-
eral applicability. Instead of complete protein sequences, 
it uses small peptide sequences (13 amino acids), and it 
also does not filter or select specific AAindices, rather 
it uses all available AAindices [12]. The selection of rel-
evant indices and then estimating their utility for any tool 
in this domain is crucial as many indices are redundant, 
e.g., nine indices for the hydrophobicity: ARGP820101, 
GOLD730101, JOND750101, PRAM900101, 
ZIMJ680101, PONP930101, WOLR790101, 
ENGD860101, and FASG890101 [12]. This can lead to 
index weighting issues, where a certain physiochemi-
cal descriptor may have an exaggerated effect on the 
outcome. Furthermore, many indices are context-spe-
cific, such as hydrophobicity coefficients in specific 
solutions—from WILM950101 to WILM950104, and 
weights for alpha-helix at specific window positions—
from QIAN880101 to QIAN880139 [12]. Thus a careful 

Table 5  Cross-matching positively selected site data of ADP-
ribosylarginine hydrolase from SIPS with SSP predictions [19]

Sites selected 
by SSP

Adjusted p-value Prediction agreement type

K72 0.0848 Mutation agreeing

P74 0.0473 Mutation agreeing

T77 0.1731 Mutation agreeing

Q78 0.1101 Mutation agreeing

Q109 0.0796 Mutation agreeing

H145 0.05 Non agreeing

L189 0.0002 Mutation agreeing

I355 0.0128 Not predicted
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selection of indices is a necessary step, SSP used manu-
ally curated non-correlated indices (Table  1 and Fig.  1). 
While the direct comparison between SSP and Proseeker 
could have been useful, it is hard to achieve as Proseeker 
works with shortened peptides (13 AA long) instead 
of the whole protein sequence. Moreover, it specifically 
requires binding affinity data to score every iteration of 
in silico evolution, thus making the technique specific to 
nucleic acid binding peptides. SSP is not limited in terms 
of the nature or the length of the target protein sequence.

SSP was validated using the datasets from different 
sources to test for the performance of various properties. 
In the case of thermostability, SSP made 14 predictions 
for the cold shock protein CspB, eight of which had a sta-
bilising effect on the protein (ΔΔG < 0), while the remain-
ing six were neutral with ΔΔG values between 0  kcal/
mol and 1  kcal/mol. Seven of the predicted mutations 
also had positive experimentally determined changes in 
melting temperatures △Tm (°C), including the highest 
increase in melting temperature of + 16.6  °C, and only 
three mutation had a negative △Tm (°C) value with the 
lowest being − 6.9 °C.

SSP was also used to make predictions for amino-
glycoside 3’-phosphotransferase [36]. Aminoglycoside 
3’-phosphotransferase is an enzyme that confers resist-
ance to aminoglycosides with antibiotic properties. 
Thus an enhancement of enzyme’s activity can increase 
the antibiotic resistance of a bacteria that codes for it. 
SSP made 221 predictions for Aminoglycoside 3’-phos-
photransferase with an AAC value of 1.4 at the MAP 
level, and 1.36 at the SAP level (1 being the value for the 
wild type, and 0.82 being the average value for random 
mutagenesis), thus demonstrating predictive prowess in 
the context of enhancing enzymatic activity, being signifi-
cantly better than random mutation, while conferring an 
improvement over the wild type itself.

Validation of mutations predicted from the solubility 
dataset showed a higher likelihood of a positive or neutral 
effect on the solubility of the protein, despite the sparse-
ness of the dataset. Furthermore, evolutionary selectivity 
data for ADP-ribosylarginine hydrolase [19] taken from 
SIPS and SSP made predictions for 7 of 8 evolutionary 
selected sites with an adjusted p-value upper threshold 
of 0.2. This result suggests that SSP is selective in mak-
ing predictions for sites that tend to evolve under positive 
selection, thus making a strong case for SSP’s selectivity. 
However, it should be noted that the size of the dataset 
is quite small, and more work is required to validate this 
aspect of the predictor.

Analyzing and validating methods like SSP presents 
significant challenges. Extracting meaningful insights 
from diverse datasets with varying experimental stand-
ards can be complex due to limited overlap between 

experimentally observed mutations and the mutations 
predicted by SSP (Fig.  3). Finding datasets that are not 
only extensive but also contain experimental data for 
mutations that coincide with SSP predictions—enabling 
their validation—proved to be a substantial hurdle. This 
scarcity necessitated the use of all available validation 
sets, despite their inherent differences in physicochemi-
cal properties. Substantially more mutational data would 
be needed to have evenly distributed dataset for each 
protein property.

This study shows that the SSP approach enhances spe-
cialised proteins by predicting mutations that improve 
desired properties, such as thermostability, activity, 
and solubility. Crucially, it also shows that SSP does not 
make predictions for sites randomly, but picks sites that 
are known to evolve under positive selection. In general, 
SSP method will work better with the proteins under 
stronger selection evolutionary pressure. Further valida-
tion of the predictor with diverse protein structures is 
desirable to define applicability for protein engineering 
applications. It should also be noted that the technique 
has a limitation; it is dependent on the size and quality of 
the homolog set. The technique will not work if the pro-
tein has no or very few homologs. For our pipeline, we 
suggest having at least 10 trees of 150 protein sequences 
each, per analysis. However the exact numbers need fur-
ther exploration.

As the service to the community, we are now integrat-
ing SSP as a new module into the easy-to-use web server 
FireProtASR (https://​losch​midt.​chemi.​muni.​cz/​firep​
rotasr/), which will make predictions accessible to non-
experts, jointly with related strategies Ancestral Sequence 
Reconstruction (ASR) and generation of sequences using 
Variational Autoencoder (VAE) [44].
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